Patents by Inventor Terris Yang

Terris Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240425435
    Abstract: The present disclosure provides an integrated process for producing trifluoroiodomethane (CF3I), in three steps: a) reacting a first reactant stream comprising hydrogen (H2) and iodine (I2) in the presence of a first catalyst to produce a first product stream comprising hydrogen iodide (HI); (b) reacting the first product stream with a second reactant stream comprising trifluoroacetyl chloride (TFAC) in the presence of a second catalyst to produce an intermediate product stream comprising trifluoroacetyl iodide (TFAI); and (c) reacting the intermediate product stream to produce a final product stream comprising trifluoroiodomethane. (CF3I).
    Type: Application
    Filed: July 11, 2022
    Publication date: December 26, 2024
    Inventors: Haluk Kopkalli, Haiyou Wang, Gustavo Cerri, Selma Bektesevic, Yuon Chiu, Christian Jungong, Richard D. Horwath, Daniel C. Merkel, Jennifer W. McClaine, Terris Yang, Richard Wilcox, Joshua Close, Rajendar Mallepally
  • Publication number: 20240383751
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, cobalt halides, iron, nickel oxide, nickel halides, copper, copper oxide, copper halides, cobalt oxide, ferrous chloride, ferric chloride, iron oxide, zinc, zinc oxide, zinc halides, molybdenum, tungsten, magnesium, magnesium oxide, and magnesium halides. The catalyst is supported on a support.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 21, 2024
    Inventors: Christian Jungong, Haluk Kopkalli, Haiyou Wang, Terris Yang, John Quianjun Chen
  • Publication number: 20240376031
    Abstract: An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1-chloro-1,1,2-trifluoroethane (HCFC-133b) and 1,1,2-trifluoroethane (HFC-143). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Joshua Close, Pramod K.W. Harikumar Warrier, Justin Howard, Terris Yang, Haiyou Wang, Akbar Mahdavi-Shakib
  • Publication number: 20240376360
    Abstract: An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) and 1,1,2-trifluoroethane (HFC-143). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Joshua Close, Pramod K.W. Harikumar Warrier, Justin Howard, Terris Yang, Haiyou Wang, Akbar Mahdavi-Shakib
  • Publication number: 20240376030
    Abstract: An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1-chloro-1,1-difluoroethane (HCFC-142b) and 1,1,2-trifluoroethane (HFC-143). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Joshua Close, Pramod K.W. Harikumar Warrier, Justin Howard, Terris Yang, Haiyou Wang, Akbar Mahdavi-Shakib
  • Publication number: 20240376361
    Abstract: An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a) and 1-chloro-1,2-difluoroethane (HCFC-142a). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Joshua Close, Pramod K.W. Harikumar Warrier, Justin Howard, Terris Yang, Haiyou Wang, Akbar Mahdavi-Shakib
  • Publication number: 20240376362
    Abstract: An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) and 1-chloro-1,2-difluoroethane (HCFC-142a). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Joshua Close, Pramod K.W. Harikumar Warrier, Justin Howard, Terris Yang, Haiyou Wang, Akbar Mahdavi-Shakib
  • Publication number: 20240300884
    Abstract: Impurities such as sulfur dioxide (SO2) are removed from trifluoroacetyl chloride (TFAC) through distillation, adsorption, or a combination thereof, and/or including the formation of an azeotrope or azeotrope-like composition including effective amounts of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC). The trifluoroacetyl chloride (TFAC) thus purified may then be used in the manufacture of trifluoroiodomethane (CF3I). Also disclosed are azeotropes and azeotrope like compositions of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC).
    Type: Application
    Filed: April 15, 2024
    Publication date: September 12, 2024
    Inventors: Haluk Kopkalli, Haiyou Wang, Terris Yang, Jennifer W. McClaine, Richard Wilcox, Joshua Close, Rajendar Mallepally
  • Patent number: 12084412
    Abstract: The present disclosure provides a process for making trifluoroacetyl iodide (TFAI) in a liquid phase reaction. Specifically, the present disclosure provides a liquid phase reaction of trifluoroacetyl chloride (TFAC) and hydrogen iodide (HI), with or without a catalyst, to form trifluoroacetyl iodide (TFAI). The reaction may be performed at ambient or elevated temperatures.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 10, 2024
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Haiyou Wang
  • Publication number: 20240279151
    Abstract: The present disclosure provides a method of removing iodine (I2) and iodine-containing species from processes for producing trifluoroiodomethane (CF3I). The present disclosure further provides another method of removing iodine and iodine-containing species from trifluoroacetyl iodide (TFAI).
    Type: Application
    Filed: July 11, 2022
    Publication date: August 22, 2024
    Inventors: Haluk Kopkalli, Daniel C. Merkel, Haiyou Wang, Terris Yang, Richard Wilcox, Tao Wang, Jennifer W. McClaine, Gavin Towler, Haridasan K. Nair
  • Publication number: 20240166677
    Abstract: The present disclosure provides a composition including trifluoroacetyl iodide, at least one organic impurity and at least one inorganic impurity. The at least one organic impurity includes at least one of: difluoroiodomethane, pentafluoroiodoethane, iodomethane, iodopropane, dichlorotetrafluoroethane, dichlorotrifluoroethane, trichlorotrifluoroethane, methyltrifluoroacetate, trifluoroacetic anhydride, difluorobutane and methyl propane. The at least one inorganic impurity includes at least one of: hydrogen iodide, hydrogen chloride, iodine and hydrogen triiodide.
    Type: Application
    Filed: December 29, 2023
    Publication date: May 23, 2024
    Inventors: Haiyou Wang, Haridasan K. Nair, Daniel C. Merkel, Selma Bektesevic, Terris Yang
  • Patent number: 11987553
    Abstract: Impurities such as sulfur dioxide (SO2) are removed from trifluoroacetyl chloride (TFAC) through distillation, adsorption, or a combination thereof, and/or including the formation of an azeotrope or azeotrope-like composition including effective amounts of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC). The trifluoroacetyl chloride (TFAC) thus purified may then be used in the manufacture of trifluoroiodomethane (CF3I). Also disclosed are azeotropes and azeotrope like compositions of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC).
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: May 21, 2024
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Haiyou Wang, Terris Yang, Jennifer W. McClaine, Richard Wilcox, Joshua Close, Rajendar Mallepally
  • Publication number: 20240150267
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: December 8, 2023
    Publication date: May 9, 2024
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 11884607
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: January 30, 2024
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20240018072
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I), with a low concentration of methyl propane. Specifically, the present disclosure provides a process for producing trifluoroiodomethane (CF3I) with an amount of methyl propane of 100 ppm or less.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Daniel C. Merkel, Haluk Kopkalli, Haiyou Wang, Terris Yang
  • Publication number: 20230183161
    Abstract: The present disclosure provides a process for producing trifluoroacetyl iodide (TFAI) from trifluoroacetyl chloride (TFAC) and hydrogen iodide (HI) via reactive distillation. The process may be conducted in the presence or absence of a catalyst. The process may be conducted in the presence or absence of a solvent.
    Type: Application
    Filed: December 6, 2022
    Publication date: June 15, 2023
    Inventors: Terris Yang, Haiyou Wang, Christian Jungong
  • Publication number: 20230120031
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 20, 2023
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Patent number: 11554956
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Publication number: 20220396536
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 15, 2022
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 11459284
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: October 4, 2022
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali