Patents by Inventor Terris Yang

Terris Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884607
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: January 30, 2024
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20240018072
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I), with a low concentration of methyl propane. Specifically, the present disclosure provides a process for producing trifluoroiodomethane (CF3I) with an amount of methyl propane of 100 ppm or less.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Daniel C. Merkel, Haluk Kopkalli, Haiyou Wang, Terris Yang
  • Publication number: 20230183161
    Abstract: The present disclosure provides a process for producing trifluoroacetyl iodide (TFAI) from trifluoroacetyl chloride (TFAC) and hydrogen iodide (HI) via reactive distillation. The process may be conducted in the presence or absence of a catalyst. The process may be conducted in the presence or absence of a solvent.
    Type: Application
    Filed: December 6, 2022
    Publication date: June 15, 2023
    Inventors: Terris Yang, Haiyou Wang, Christian Jungong
  • Publication number: 20230120031
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 20, 2023
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Patent number: 11554956
    Abstract: The present invention provides a process for producing hydrogen iodide. The process includes providing a vapor-phase reactant stream comprising hydrogen and iodine and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst includes at least one selected from the group of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is supported on a support.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Honeywell International Inc.
    Inventors: Terris Yang, Haiyou Wang, Yuon Chiu, Richard Wilcox, Christian Jungong, Haluk Kopkalli
  • Publication number: 20220396536
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 15, 2022
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 11459284
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: October 4, 2022
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20220219981
    Abstract: A method of removing water from a mixture of iodine (I2) and water includes providing a mixture comprising iodine and water and: contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a concentrated acid to absorb water from the mixture, separating the water from mixture by distillation, contacting the mixture with a gas that is inert to iodine (I2), contacting the mixture with hydrogen iodide (HI), or combinations thereof.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Publication number: 20220219979
    Abstract: A method of removing water from a mixture of hydrogen iodide (HI) and water includes providing a mixture comprising hydrogen iodide and water and contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a weak acid to absorb water from the mixture and/or separating the water from hydrogen iodide (HI) by azeotropic distillation to produce anhydrous hydrogen iodide (HI).
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Patent number: 11370734
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I). The process includes providing vapor-phase reactants including trifluoroacetyl halide, hydrogen, and iodine, heating the vapor-phase reactants, and reacting the heated vapor-phase reactants in the presence of a catalyst to produce trifluoroiodomethane. The catalyst includes a transition metal.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: June 28, 2022
    Assignee: Honeywell International Inc
    Inventors: Pascal Bolomey, Terris Yang, Haiyou Wang
  • Publication number: 20220112226
    Abstract: The present disclosure provides a composition including trifluoroacetyl iodide, at least one organic impurity and at least one inorganic impurity. The at least one organic impurity includes at least one of: difluoroiodomethane, pentafluoroiodoethane, iodomethane, iodopropane, dichlorotetrafluoroethane, dichlorotrifluoroethane, trichlorotrifluoroethane, methyltrifluoroacetate, trifluoroacetic anhydride, difluorobutane and methyl propane. The at least one inorganic impurity includes at least one of: hydrogen iodide, hydrogen chloride, iodine and hydrogen triiodide.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 14, 2022
    Inventors: Haiyou Wang, Haridasan K. Nair, Daniel C. Merkel, Selma Bektesevic, Terris Yang
  • Publication number: 20220081386
    Abstract: Impurities such as sulfur dioxide (SO2) are removed from trifluoroacetyl chloride (TFAC) through distillation, adsorption, or a combination thereof, and/or including the formation of an azeotrope or azeotrope-like composition including effective amounts of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC). The trifluoroacetyl chloride (TFAC) thus purified may then be used in the manufacture of trifluoroiodomethane (CF3I). Also disclosed are azeotropes and azeotrope like compositions of sulfur dioxide (SO2) and trifluoroacetyl chloride (TFAC).
    Type: Application
    Filed: September 3, 2021
    Publication date: March 17, 2022
    Inventors: Haluk Kopkalli, Haiyou Wang, Terris Yang, Jennifer W. McClaine, Richard Wilcox, Joshua Close, Rajendar Mallepally
  • Publication number: 20220041531
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I). The process includes providing vapor-phase reactants including trifluoroacetyl halide, hydrogen, and iodine, heating the vapor-phase reactants, and reacting the heated vapor-phase reactants in the presence of a catalyst to produce trifluoroiodomethane. The catalyst includes a transition metal.
    Type: Application
    Filed: March 25, 2021
    Publication date: February 10, 2022
    Inventors: Pascal Bolomey, Terris Yang, Haiyou Wang
  • Publication number: 20210317062
    Abstract: The present disclosure provides a process for making trifluoroacetyl iodide (TFAI) in a liquid phase reaction. Specifically, the present disclosure provides a liquid phase reaction of trifluoroacetyl chloride (TFAC) and hydrogen iodide (HI), with or without a catalyst, to form trifluoroacetyl iodide (TFAI). The reaction may be performed at ambient or elevated temperatures.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 14, 2021
    Inventors: Terris Yang, Haiyou Wang
  • Publication number: 20210171423
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 10988425
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I). The process includes providing vapor-phase reactants including trifluoroacetyl halide, hydrogen, and iodine, heating the vapor-phase reactants, and reacting the heated vapor-phase reactants in the presence of a catalyst to produce trifluoroiodomethane. The catalyst includes a transition metal.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: April 27, 2021
    Assignee: Honeywell International Inc.
    Inventors: Pascal Bolomey, Terris Yang, Haiyou Wang
  • Patent number: 10954177
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: March 23, 2021
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 10941089
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane by reacting trifluoroacetic acid, an iodine source, and a metal fluoride in the presence of a metal catalyst to produce trifluoroiodomethane.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 9, 2021
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Haiyou Wang, Terris Yang
  • Patent number: 10941091
    Abstract: The present disclosure provides a method for purifying trifluoroiodomethane. The method includes providing a process stream comprising trifluoroiodomethane, organic impurities, and acid impurities; reacting the process stream with a basic aqueous solution, the basic aqueous solution comprising water and at least one base selected from the group of an alkali metal carbonate and an alkali metal hydroxide; and separating at least some of the organic impurities from the process stream.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: March 9, 2021
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang, Terris Yang, Pascal Bolomey
  • Patent number: 10941090
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane. The process includes providing a metal trifluoroacetate, an iodine source, a metal catalyst, and a solvent, and reacting the metal trifluoroacetate and the iodine source in the presence of the metal catalyst and the solvent to produce trifluoroiodomethane. The metal catalyst includes at least one selected from the group of ferrous chloride and zinc (II) iodide.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 9, 2021
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Haiyou Wang, Terris Yang