Patents by Inventor Terry A. Todd

Terry A. Todd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080179568
    Abstract: An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 (“BOBCalixC6”), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (“DtBu18C6”), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (“Cs-7SB”) and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
    Type: Application
    Filed: September 21, 2007
    Publication date: July 31, 2008
    Inventors: David H. Meikrantz, Terry A. Todd, Catherine L. Riddle, Jack D. Law, Dean R. Peterman, Bruce J. Mincher, Christopher A. McGrath, John D. Baker
  • Patent number: 7368412
    Abstract: A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: May 6, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Troy J. Tranter, R. Scott Herbst, Nicholas R. Mann, Terry A. Todd
  • Patent number: 7291316
    Abstract: A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 (“BOBCalixC6”), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (“DtBu18C6”), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (“Cs-7SB”) and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: November 6, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David H. Meikrantz, Terry A. Todd, Catherine L. Riddle, Jack D. Law, Dean R. Peterman, Bruce J. Mincher, Christopher A. McGrath, John D. Baker
  • Publication number: 20070189943
    Abstract: A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.
    Type: Application
    Filed: June 25, 2003
    Publication date: August 16, 2007
    Inventors: Terry Todd, Jack Law, R. Scott Herbst, Valeriy Romanovskiy, Igor Smirnov, Vasily Babain, Vyatcheslav Esimantovski
  • Publication number: 20070065352
    Abstract: A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 22, 2007
    Applicant: Battelle Energy Alliance, LLC
    Inventors: David Meikrantz, Terry Todd, Troy Tranter, E. Horwitz
  • Patent number: 7157061
    Abstract: A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: January 2, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David H. Meikrantz, Terry A. Todd, Troy J. Tranter, E. Philip Horwitz
  • Patent number: 7115542
    Abstract: Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: October 3, 2006
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Troy J. Tranter, Dieter A. Knecht, Terry A. Todd, Larry A. Burchfield, Alexander G. Anshits, Tatiana Vereshchagina, Alexander A. Tretyakov, Albert S. Aloy, Natalia V. Sapozhnikova
  • Publication number: 20060213329
    Abstract: A product includes actinium-225 (225Ac) and less than about 1 microgram (?g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (233U) and thorium-229 (229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (?g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.
    Type: Application
    Filed: April 3, 2006
    Publication date: September 28, 2006
    Applicant: Battelle Energy Alliance, LLC
    Inventors: David Meikrantz, Terry Todd, Troy Tranter, E. Horwitz
  • Publication number: 20060153760
    Abstract: A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
    Type: Application
    Filed: September 24, 2004
    Publication date: July 13, 2006
    Inventors: David Meikrantz, Terry Todd, Troy Tranter, E. Horwitz
  • Publication number: 20060057038
    Abstract: The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.
    Type: Application
    Filed: April 28, 2005
    Publication date: March 16, 2006
    Inventors: Troy Tranter, Terry Todd, Leroy Lewis, Joseph Henscheid
  • Publication number: 20060041043
    Abstract: Composite media, systems, and devices for substantially removing, or otherwise processing, one or more constituents of a fluid stream. The composite media comprise a plurality of beads, each having a matrix substantially comprising polyacrylonitrile (PAN) and supporting one or more active components which are effective in removing, by various mechanisms, one or more constituents from a fluid stream. Due to the porosity and large surface area of the beads, a high level of contact is achieved between composite media of the present invention and the fluid stream being processed. Further, the homogeneity of the beads facilitates use of the beads in high volume applications where it is desired to effectively process a large volume of flow per unit of time.
    Type: Application
    Filed: June 15, 2005
    Publication date: February 23, 2006
    Inventors: Nick Mann, Donald Wood, Terry Todd, Ferdinand Sebesta
  • Publication number: 20050288181
    Abstract: A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.
    Type: Application
    Filed: August 23, 2005
    Publication date: December 29, 2005
    Inventors: Troy Tranter, Nicholas Mann, Terry Todd, Ronald Herbst
  • Patent number: 6951634
    Abstract: The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: October 4, 2005
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Troy J. Tranter, Terry A. Todd, Leroy C. Lewis, Joseph P. Henscheid
  • Publication number: 20050211955
    Abstract: A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 (“BOBCalixC6”), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (“DtBu18C6”), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (“Cs-7SB”) and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 29, 2005
    Inventors: David Meikrantz, Terry Todd, Catherine Riddle, Jack Law, Dean Peterman, Bruce Mincher, Christopher McGrath, John Baker
  • Publication number: 20050051492
    Abstract: A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 10, 2005
    Inventors: Troy Tranter, R. Herbst, Nicholas Mann, Terry Todd
  • Publication number: 20040138514
    Abstract: Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N—N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.
    Type: Application
    Filed: December 11, 2003
    Publication date: July 15, 2004
    Inventors: Troy J. Tranter, Dieter A. Knecht, Terry A. Todd, Larry A. Burchfield, Alexander G. Anshits, Tatiana Vereshchagina, Alexander A. Tretyakov, Albert S. Aloy, Natalia V. Sapozhnikova
  • Publication number: 20040122141
    Abstract: A composite medium including at least one trialkyl methylammonium compound homogenously dispersed in a polyacrylonitrile matrix. The composite medium may be formed into beads or may be impregnated into a substrate and used in an ion processing element. The at least one trialkyl methylammonium compound may comprise trialkyl methylammonium nitrate or trialkyl methylammonium chloride and may be present from approximately 5% by weight to approximately 30% by weight. The polyacrylonitrile may be present in the composite medium from approximately 70% by weight to approximately 95% by weight. A method of forming the composite medium is also disclosed, as is a method of removing a constituent from a fluid stream.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 24, 2004
    Inventors: Terry A. Todd, Nicholas R. Mann, Troy J. Tranter, Ferdinand Sebesta
  • Publication number: 20040052705
    Abstract: The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.
    Type: Application
    Filed: September 18, 2002
    Publication date: March 18, 2004
    Inventors: Troy J. Tranter, Terry A. Todd, Leroy C. Lewis, Joseph P. Henscheid
  • Publication number: 20030138563
    Abstract: An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
    Type: Application
    Filed: November 21, 2002
    Publication date: July 24, 2003
    Inventors: Nick R. Mann, Troy J. Tranter, Terry A. Todd, Ferdinand Sebesta
  • Patent number: 6514566
    Abstract: An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: February 4, 2003
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Nick R. Mann, Troy J. Tranter, Terry A. Todd, Ferdinand Sebesta