Patents by Inventor Terry Beaty

Terry Beaty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110236963
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Publication number: 20110238100
    Abstract: A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 29, 2011
    Inventors: Steven N. Roe, Terry Beaty, Uwe Kraemer, Volker Zimmer
  • Publication number: 20110230905
    Abstract: A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 22, 2011
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Steven N. Roe, Terry Beaty, Uwe Kraemer, Volker Zimmer
  • Publication number: 20110203925
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 25, 2011
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Publication number: 20110186428
    Abstract: The present invention relates to a biosensor. The biosensor includes a support substrate, electrodes positioned on the support substrate, a spacer substrate positioned on the support substrate, and a cover positioned on the spacer substrate. The cover cooperates with the support substrate to define a capillary channel. The electrodes include at least one working electrode defining a working electrode area in the capillary channel. The working electrode is configured to minimize variation in the working electrode area in the capillary channel due to variations in the spacer substrate placement relative to the working electrode.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Terry Beaty, Henning Groll, Harvey Buck, Eric Diebold, Abner Joseph, Randy Riggles
  • Patent number: 7981363
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 19, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Patent number: 7968058
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: June 28, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Patent number: 7955271
    Abstract: A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: June 7, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Steven N. Roe, Terry Beaty, Uwe Kraemer, Volker Zimmer
  • Patent number: 7871567
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 18, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Patent number: 7867369
    Abstract: A biosensor having multiple electrical functionalities located both within and outside of the measurement zone in which a fluid sample is interrogated. Incredibly small and complex electrical patterns with high quality edges provide electrical functionalities in the biosensor and also provide the electrical wiring for the various other electrical devices provided in the inventive biosensor. In addition to a measurement zone with multiple and various electrical functionalities, biosensors of the present invention may be provided with a user interface zone, a digital device zone and/or a power generation zone. The inventive biosensors offer improved ease of use and performance, and decrease the computational burden and associated cost of the instruments that read the biosensors by adding accurate yet cost-effective functionalities to the biosensors themselves.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 11, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Raghbir S. Bhullar, Harvey B. Buck, Jr., Brian S. Hill, Paul Douglas Walling, Terry A. Beaty, David W. Burke, Eric R. Diebold
  • Publication number: 20100234708
    Abstract: A system for configuring one or more medical devices used for patient self-monitoring of medical parameters includes a broadcast provider and one or more medical devices in a network area of the broadcast provider. The one or more medical devices each include a receiver operable to receive data signals transmitted over the network area from the broadcast provider. The signals transmit medical device data to the one or more medical devices to facilitate the use of the medical device by the user while reducing the potential for errors that may be made by the user when using the medical device.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 16, 2010
    Inventors: Harvey Buck, Terry Beaty
  • Publication number: 20100170807
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 8, 2010
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, JR.
  • Publication number: 20090314637
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 24, 2009
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Patent number: 7601299
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: October 13, 2009
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Publication number: 20090157344
    Abstract: Control and calibration solutions are described that provide control and calibration data that is recognized by a test meter allowing the meter to segregate the control and calibration data from regular test data. Recognition and segregation of the control and calibration data can occur automatically with no additional input from the meter's user. Methods for use of the solutions are also provided.
    Type: Application
    Filed: October 7, 2008
    Publication date: June 18, 2009
    Inventors: David W. Burke, Terry A. Beaty, Lance S. Kuhn, Vladimir Svetnik
  • Patent number: 7494816
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: February 24, 2009
    Assignees: Roche Diagnostic Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Patent number: 7407811
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: August 5, 2008
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Patent number: 7390667
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: June 24, 2008
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Publication number: 20080098802
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Application
    Filed: January 8, 2008
    Publication date: May 1, 2008
    Inventors: David Burke, Lance Kuhn, Terry Beaty, Vladimir Svetnik
  • Publication number: 20080103415
    Abstract: A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
    Type: Application
    Filed: October 13, 2006
    Publication date: May 1, 2008
    Inventors: Steven N. Roe, Terry Beaty, Uwe Kraemer, Volker Zimmer