Patents by Inventor Terry D. Claar

Terry D. Claar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5614308
    Abstract: This invention relates generally to a novel method of manufacturing a composite body and to novel products made thereby. More particularly, the invention relates to a method of producing a self-supporting composite body comprising one or more boron-containing compounds, e.g., a boride or a boride and carbide, by reactive infiltration of molten parent metal into a bed or mass containing boron carbide, and, optionally, one or more inert fillers and permitting residual or excess parent metal to remain bonded to the formed self-supporting composite body. The residual or excess metal is used to form a bond between the formed composite body and another body (e.g., a metal body, a ceramic body, or another composite body). In addition, this invention related to alternative methods of disposing metal on at least one surface of the above-described composite bodies (such as sputtering, CVD, etc.) to permit the composite bodies to be bonded to another body.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: March 25, 1997
    Assignee: Lanxide Technology Company, LP
    Inventor: Terry D. Claar
  • Patent number: 5520880
    Abstract: This invention relates to a method for producing a self-supporting body comprising the steps of:(a) forming a permeable mass comprising at least one solid-phase oxidant selected from the group consisting of the halogens, sulphur and its compounds, metals, metal oxides other than the silicates, and metal nitrides other than those of boron and silicon;(b) orienting said permeable mass and a source of said parent metal relative to each other so that formation of said oxidation reaction product will occur into said permeable mass;(c) heating said source of parent metal to a temperature above the melting point of said parent metal but below the melting point of said oxidation reaction product to form a body of molten parent metal;(d) reacting said body of molten parent metal with said at least one solid-phase oxidant at said temperature to permit said oxidant at said temperature to permit said oxidation reaction product to form; and(e) maintaining at least a portion of said at least one oxidation reaction product
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: May 28, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: William B. Johnson, Eugene S. Park, Gerhard H. Schiroky, Danny R. White, Terry D. Claar
  • Patent number: 5482778
    Abstract: A net shaped ceramic-reinforced aluminum matrix composite is provided by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contacting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by spontaneous infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
    Type: Grant
    Filed: January 10, 1994
    Date of Patent: January 9, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Terry D. Claar
  • Patent number: 5439744
    Abstract: This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal (e.g., a parent metal vapor) is induced to react with at least one solid oxidant-containing material to result in the directed growth of a reaction product which is formed from a reaction between the parent metal and the solid oxidant-containing material. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: August 8, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Vilupanur A. Ravi, Philip J. Roach
  • Patent number: 5437833
    Abstract: This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, William B. Johnson
  • Patent number: 5420085
    Abstract: A method of making self-supporting ceramic composite structures having filler embedded therein includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally, containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally, aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: May 30, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Harry R. Zwicker, Andrew W. Urquhart, Harold D. Lesher, Terry D. Claar, Michael K. Aghajanian, John P. Biel, Jr.
  • Patent number: 5403790
    Abstract: This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Moreover, additives, whether used alone or in combination, (1) can be admixed with the permeable mass, (2) can be mixed or alloyed with the parent metal, (3) can be placed at an interface between the parent metal and the preform or mass of filler material, (4) or any combination of the aforementioned methods, to modify properties of the resultant composite body. Particularly, additives such as VC, NbC, WC, W.sub.2 B.sub.5, TaC, ZrC, ZrB.sub.2, SiB.sub.6, SiC, MgO, Al.sub.2 O.sub.3, ZrO.sub.2, CeO.sub.2, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, MgAl.sub.2 O.sub.4, HfO.sub.2, ZrSiO.sub.4, Yb.sub.2 O.sub.3 and Mo.sub.2 B.sub.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: April 4, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, Kevin P. Pochopien, Vilupanur A. Ravi, James C. Wang, Ratnesh K. Dwivedi
  • Patent number: 5400947
    Abstract: This invention relates generally to a novel method for joining at least one first self-supporting body to at least one second self-supporting body which is similar in composition to or different in composition from said at least one first self-supporting body and to novel products which result from such joining. In some of its more specific aspects, this invention relates to different techniques for joining ceramic matrix composite bodies to other ceramic matrix composite bodies of similar characteristics and for joining ceramic matrix composite bodies to bodies which have different characteristics (e.g., metals). The ceramic matrix composite bodies of this invention are produced by a reactive infiltration of a molten parent metal into a bed or mass containing at least one of a boron source material, a carbon source material, and a nitrogen source material and, optionally, one or more inert fillers.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: March 28, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: James C.-K. Wang, Terry D. Claar, Philip J. Roach, Gerhard H. Schiroky
  • Patent number: 5372178
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies, and novel products made thereby. In its more specific aspects, this invention relates to a method for producing self-supporting bodies comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide, etc.) by reactive infiltration of molten parent metal into a preform comprising boron carbide or a boron donor material combined with a carbon donor material and, optionally, one or more inert fillers, to form the body. Specifically, a boron carbide material or combination of a boron donor material and a carbon donor material, and in either case, optionally, one or more inert fillers, are sedimentation cast, spray coated, tapped, slip cast, pressed, etc., onto or into a body and into a particular desired shape.
    Type: Grant
    Filed: January 15, 1992
    Date of Patent: December 13, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, Donald P. Ripa, William B. Johnson
  • Patent number: 5299621
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies, and novel products made thereby. In its more specific aspects, this invention relates to a method for producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of molten parent metal into a preform comprising boron carbide or a boron donor material combined with a carbon donor material and, optionally, one or more inert fillers, to form the body. Specifically, a boron carbide material or combination of a boron donor material and a carbon donor material, and in either case, optionally, one or more inert fillers, are sedimentation cast, slip cast or pressed onto or into a body and into a particular desired shape.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: April 5, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, Donald P. Ripa, William B. Johnson
  • Patent number: 5298051
    Abstract: This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: March 29, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, William B. Johnson
  • Patent number: 5296419
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: March 22, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Danny R. White, Terry D. Claar
  • Patent number: 5296417
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: March 22, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Steven M. Mason, Kevin P. Pochopien, Danny R. White, William B. Johnson, Michael K. Aghajanian
  • Patent number: 5277989
    Abstract: A net shaped ceramic-reinforced aluminum matrix composite is formed by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contacting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: January 11, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Terry D. Claar
  • Patent number: 5277933
    Abstract: This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal (e.g., a parent metal vapor) is induced to react with at least one solid oxidant-containing material to result in the directed growth of a reaction product which is formed from a reaction between the parent metal and the solid oxidant-containing material. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: January 11, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Vilupanur A. Ravi, Philip J. Roach
  • Patent number: 5275982
    Abstract: The present invention relates to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr composite body, by utilizing a post-treatment technique which may improve the oxidation resistance of the composite body. Moreover, the invention relates to novel products made according to the process. The novel process modifies at least a portion of a composite body by exposing said body to a source of second metal.
    Type: Grant
    Filed: September 21, 1992
    Date of Patent: January 4, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, William B. Johnson, Robert A. Rapp
  • Patent number: 5250324
    Abstract: This invention relates generally to a reaction which occurs on the surface of a substrate body. Particularly, at least one solid oxidant is contacted with at least one parent metal to result in a reaction therebetween and the formation of a reaction product on the surface of a substrate body.
    Type: Grant
    Filed: May 11, 1992
    Date of Patent: October 5, 1993
    Assignee: Lanxide Technology Company, L.P.
    Inventor: Terry D. Claar
  • Patent number: 5242710
    Abstract: This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal vapor is induced to react with a solid oxidant to result in the directed growth of a reaction product which is formed from a reaction between the parent metal vapor and the solid oxidant. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
    Type: Grant
    Filed: May 6, 1992
    Date of Patent: September 7, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Vilupanur A. Ravi, Philip J. Roach
  • Patent number: 5203488
    Abstract: This invention relates generally to a novel method for joining at least one first self-supporting body, to at least one second self-supporting body which is similar in composition to or different in composition from said at least one first self-supporting body and to novel products which result from such joining. In some of its more specific aspects, this invention relates to different techniques for joining ceramic matrix composite bodies to other ceramic matrix composite bodies of similar characteristics and for joining ceramic matrix composite bodies to bodies which have different characteristics (e.g., metals). The ceramic matrix composite bodies of this invention are produced by a reactive infiltration of a molten parent metal into a bed or mass containing a boron source material and a carbon source material (e.g., boron carbide) and/or a boron source material and a nitrogen source material (e.g., boron nitride) and, optionally, one or more inert fillers.
    Type: Grant
    Filed: December 4, 1991
    Date of Patent: April 20, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: James C. Wang, Terry D. Claar
  • Patent number: 5187128
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: February 16, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Danny R. White, Terry D. Claar