Patents by Inventor Terry D. Lee

Terry D. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9288915
    Abstract: Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanoliter/picoliter-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals.
    Type: Grant
    Filed: November 17, 2012
    Date of Patent: March 15, 2016
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, CITY OF HOPE
    Inventors: Yu-Chong Tai, Qing He, Jun Xie, Changlin Pang, Terry D. Lee, Damien Rodger, Matthieu Liger
  • Patent number: 8323488
    Abstract: Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 4, 2012
    Assignees: California Institute of Technology, City of Hope
    Inventors: Yu-Chong Tai, Qing He, Jun Xie, Changlin Pang, Terry D. Lee, Damien Rodger, Matthieu Liger
  • Publication number: 20110209531
    Abstract: Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 1, 2011
    Inventors: Yu-Chong TAI, Qing He, Jun Xie, Changlin Pang, Terry D. Lee
  • Patent number: 7692141
    Abstract: A MEMS device with an overhanging ‘polymer’ capillary provides vital and significant improvements in interfacing a MEMS electrospray nozzle to an MS inlet or other macroscopic instrumentation. The fabrication methodology associated therewith is easily expanded to include built-in micro particle filters and centimeter long serpentine micro channels provided on-chip and fabricated using a low temperature process.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: April 6, 2010
    Assignees: California Institute of Technology, City of Hope
    Inventors: Yu-Chong Tai, Xuan-Qi Wang, Amish Desai, Terry D. Lee, Lawrence Licklider
  • Publication number: 20090084685
    Abstract: Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals.
    Type: Application
    Filed: April 28, 2008
    Publication date: April 2, 2009
    Inventors: Yu-Chong TAI, Qing HE, Jun XIE, Changlin PANG, Terry D. LEE
  • Publication number: 20080185515
    Abstract: A MEMS device with an overhanging ‘polymer’ capillary provides vital and significant improvements in interfacing a MEMS electrospray nozzle to an MS inlet or other macroscopic instrumentation. The fabrication methodology associated therewith is easily expanded to include built-in micro particle filters and centimeter long serpentine micro channels provided on-chip and fabricated using a low temperature process.
    Type: Application
    Filed: November 19, 2007
    Publication date: August 7, 2008
    Inventors: Yu-Chong TAI, Xuan-Qi WANG, Amish DESAI, Terry D. LEE, Lawrence Licklider
  • Patent number: 7297943
    Abstract: A MEMS device with an overhanging ‘polymer’ capillary provides vital and significant improvements in interfacing a MEMS electrospray nozzle to an MS inlet or other macroscopic instrumentation. The fabrication methodology associated therewith is easily expanded to include built-in micro particle filters and centimeter long serpentine micro channels provided on-chip and fabricated using a low temperature process.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 20, 2007
    Assignees: California Institute of Technology, City of Hope National Medical Center and Beckman Research Institute
    Inventors: Yu-Chong Tai, Xuan-Qi Wang, Amish Desai, Terry D. Lee, Lawrence Licklider