Patents by Inventor Terry G. Holesinger

Terry G. Holesinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160118157
    Abstract: Provided are composites that exhibit improved conductivity characteristics as compared to existing conductors. The disclosed conductive composites include a substrate—e.g., a wire that is surmounted by a coating of carbon nanotubes. Substrates may be metals, ceramics, polymers (conducting, non-conducting, and semiconducting) The composites may also include metallic, ceramic, or polymeric materials—such as nanoparticles—that are disposed on or even disposed within the nanotube coatings. Also provided are related methods of fabricating the disclosed composites.
    Type: Application
    Filed: May 23, 2014
    Publication date: April 28, 2016
    Inventor: Terry G. Holesinger
  • Publication number: 20110045984
    Abstract: A composition of matter including a thin film of a high temperature superconductive oxide having particles randomly dispersed therein, the particles of an yttrium-barium-ruthenium oxide or of an yttrium-barium-niobium oxide is provided.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 24, 2011
    Inventors: Terry G. Holesinger, David M. Feldmann
  • Publication number: 20100009176
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: March 29, 2005
    Publication date: January 14, 2010
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 7593758
    Abstract: A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: September 22, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Stephen R. Foltyn, Quanxi Jia, Paul N. Arendt, Terry G. Holesinger, Haiyan Wang
  • Patent number: 6994775
    Abstract: The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: February 7, 2006
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Quanxi Jia
  • Patent number: 6933065
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: August 23, 2005
    Assignee: The Regents of the University of California
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 6843898
    Abstract: Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: January 18, 2005
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Stephen R. Foltyn, Paul N. Arendt, James R. Groves, Quanxi Jia, Alicia Ayala
  • Publication number: 20040192560
    Abstract: Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.
    Type: Application
    Filed: April 6, 2004
    Publication date: September 30, 2004
    Inventors: Terry G. Holesinger, Stephen R. Foltyn, Paul N. Arendt, James R. Groves, Quanxi Jia, Alicia Ayala
  • Publication number: 20040110042
    Abstract: The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
    Type: Application
    Filed: July 31, 2002
    Publication date: June 10, 2004
    Inventors: Terry G. Holesinger, Quanxi Jia
  • Patent number: 6716545
    Abstract: Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: April 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Stephen R. Foltyn, Paul N. Arendt, James R. Groves, Quanxi Jia, Alicia Ayala
  • Publication number: 20040028954
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: September 25, 2003
    Publication date: February 12, 2004
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 6624122
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: September 23, 2003
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Quanxi Jia, Stephen R. Foltyn
  • Publication number: 20030036483
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: December 6, 2000
    Publication date: February 20, 2003
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 6451742
    Abstract: A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: September 17, 2002
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, John F. Bingert
  • Patent number: 6195870
    Abstract: Superconductor tapes are annealed under uniaxial pressure, such a compressive annealing yielding significant improvement in the resultant critical current density. This thermomechanical processing technique obtains improved critical currents with fewer processing steps.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: March 6, 2001
    Assignee: The Regents of the University of California
    Inventors: Yuntian T. Zhu, Patrick S. Baldonado, John F. Bingert, Terry G. Holesinger, Dean E. Peterson
  • Patent number: 6122534
    Abstract: A process for increasing the resistivity of a HTS oxide composite sheath including heating a superconductive HTS oxide composite, the composite including a sheath including silver, in the presence of mercury at temperatures sufficient to form a silver--mercury alloy is provided together with a HTS oxide composite which includes a high temperature superconductor oxide core surrounded by a metallic sheath, the metallic sheath including silver and mercury.Also provided is a process for preparing a HTS oxide composite having an enhanced transport critical current density including placing the HTS oxide composite within a sealed, evacuated container, and, heating the HTS oxide composite for time and at temperatures sufficient for enhancement of transport critical current density in comparison to the transport critical current density of the HTS oxide composite prior to the heating.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: September 19, 2000
    Assignee: The Regents of the Univeristy of California
    Inventors: Gilbert N. Riley, Jr., James D. Cotton, Terry G. Holesinger
  • Patent number: 5958842
    Abstract: Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: September 28, 1999
    Assignee: The Regents of the Uniersity of California
    Inventor: Terry G. Holesinger