Patents by Inventor Terry G. Wood
Terry G. Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20140223904Abstract: A method of boosting air to an intake manifold (20) of an engine (16) having cylinders (C) that emit exhaust gas includes the steps of dividing the exhaust gas emitted from the cylinders into a first exhaust passageway (26A) and a second exhaust passageway (26B), and fluidly communicating at least a portion of the exhaust gas (EG1) from the first exhaust passageway to a divided turbocharger (28). The method also includes the steps of fluidly communicating at least a portion of the exhaust gas (EG1) from the second exhaust passageway (26B) to the divided turbocharger (28), and fluidly communicating the exhaust gas from the divided turbocharger to an undivided turbocharger (42). Further steps in boosting the air include compressing air (CA) at a compressor (48) of the undivided turbocharger (42), and fluidly communicating the compressed air to the intake manifold (20).Type: ApplicationFiled: August 26, 2011Publication date: August 14, 2014Applicant: International Engine Intellectual Property Company, LLCInventors: Terry G. Wood, Timothy M. Lyons
-
Publication number: 20130206083Abstract: An engine oil system for an internal combustion engine comprises an electronic control module, an engine oil sump, an engine oil pump, an engine oil gallery, an engine oil pressure sensor, a solenoid control valve, and at least one oil receiving component. The engine oil pump is in fluid communication with the engine oil sump. The engine oil gallery is in fluid communication with at least one engine bearing and a turbocharger. The engine oil pressure sensor and at least one oil receiving component are in fluid communication with the oil gallery. The oil pressure sensor generates an output signal that is transmitted to the electronic control module. The solenoid control valve is in fluid communication with the engine oil gallery and electronic communication with the electronic control module. The solenoid control valve is moveable between at least an open position and a closed position.Type: ApplicationFiled: April 15, 2010Publication date: August 15, 2013Applicants: International Engine Intellectual Property Company LLCInventor: Terry G. Wood
-
Patent number: 8137057Abstract: A compressor assembly (304) includes a compressor housing (312) having a main air inlet (324) and an annular wall (328) defining an inducer bore (325). A secondary inlet passage (322) is disposed around the inducer bore (325). The secondary inlet passage (322) has an inlet slot (320) operatively intersecting the inducer bore (325) to permit the entry of a fluid thereinto through an inlet port (327). The inlet slot (320) advantageously defines an augmented inducer diameter region (331). Preferably the secondary inlet passage (322) may be selectively partially or completely isolated from the main air inlet (324). A compressor wheel (318) is located in the compressor housing (312) and has a stepped portion (330) formed by at least one plurality of vanes (238) operatively associated with the augmented inducer diameter region (331) adjacent to the inlet slot (320) of the housing (312) to receive fluid therefrom.Type: GrantFiled: February 23, 2010Date of Patent: March 20, 2012Assignee: International Engine Entellectual Property Company, LLCInventors: Terry G. Wood, Elias P. Soupos
-
Patent number: 8070416Abstract: A turbocharger (10) for an internal combustion engine includes a compressor (12) having an impellor (16) disposed in a compressor chamber (18). The compressor chamber (18) receives fluid flow. A flow regulation mechanism (30) is disposed in the compressor (12) and includes a diffuser cover (32) and a recirculation gate (36). The diffuser cover (32) is moveably disposed in a diffuser passage (34) from a first position permitting fluid flow through the diffuser passage to a second position at least partially impeding the fluid flow. The recirculation gate (36) is moveably disposed in the compressor chamber (18) from a first position closing a recirculation groove (48) to a second position opening the recirculation groove to fluid communication with the compressor chamber.Type: GrantFiled: March 27, 2008Date of Patent: December 6, 2011Assignee: International Engine Intellectual Property Company, LLCInventors: Paul Gottemoller, Terry G. Wood
-
Publication number: 20110036335Abstract: An intake manifold (16) of an internal combustion engine (10) is charged to superatmospheric pressure by operating a first compressor (44) to compress fresh air diluted by exhaust gas into the intake manifold while operating a second compressor (24C) to compress undiluted fresh air into the intake manifold through a device (40) that allows flow in a direction from the second compressor into the intake manifold but not in an opposite direction.Type: ApplicationFiled: August 12, 2009Publication date: February 17, 2011Applicant: International Engine Intellectual Property Company LLC.Inventors: Terry G. Wood, Shouhao Wu, Brian B. Pavlicek
-
Publication number: 20100260595Abstract: A turbocharger (10) for an internal combustion engine includes a compressor (12) having an impellor (16) disposed in a compressor chamber (18). The compressor chamber (18) receives fluid flow. A flow regulation mechanism (30) is disposed in the compressor (12) and includes a diffuser cover (32) and a recirculation gate (36). The diffuser cover (32) is moveably disposed in a diffuser passage (34) from a first position permitting fluid flow through the diffuser passage to a second position at least partially impeding the fluid flow. The recirculation gate (36) is moveably disposed in the compressor chamber (18) from a first position closing a recirculation groove (48) to a second position opening the recirculation groove to fluid communication with the compressor chamber.Type: ApplicationFiled: March 27, 2008Publication date: October 14, 2010Applicant: International Engine Intellectual Property Company, LLCInventors: Paul Gottemoller, Terry G. Wood
-
Publication number: 20100150698Abstract: A compressor assembly (304) includes a compressor housing (312) having a main air inlet (324) and an annular wall (328) defining an inducer bore (325). A secondary inlet passage (322) is disposed around the inducer bore (325). The secondary inlet passage (322) has an inlet slot (320) operatively intersecting the inducer bore (325) to permit the entry of a fluid thereinto through an inlet port (327). The inlet slot (320) advantageously defines an augmented inducer diameter region (331). Preferably the secondary inlet passage (322) may be selectively partially or completely isolated from the main air inlet (324). A compressor wheel (318) is located in the compressor housing (312) and has a stepped portion (330) formed by at least one plurality of vanes (238) operatively associated with the augmented inducer diameter region (331) adjacent to the inlet slot (320) of the housing (312) to receive fluid therefrom.Type: ApplicationFiled: February 23, 2010Publication date: June 17, 2010Applicant: International Engine Intellectual Property Company, LLCInventors: Terry G. Wood, Elias P. Soupos
-
Patent number: 7698894Abstract: A compressor assembly (304) includes a compressor housing (312) having a main air inlet (324) and an annular wall (328) defining an inducer bore (325). A secondary inlet passage (322) is disposed around the inducer bore (325). The secondary inlet passage (322) has an inlet slot (320) operatively intersecting the inducer bore (325) to permit the entry of a fluid thereinto through an inlet port (327). The inlet slot (320) advantageously defines an augmented inducer diameter region (331). Preferably the secondary inlet passage (322) may be selectively partially or completely isolated from the main air inlet (324). A compressor wheel (318) is located in the compressor housing (312) and has a stepped portion (330) formed by at least one plurality of vanes (238) operatively associated with the augmented inducer diameter region (331) adjacent to the inlet slot (320) of the housing (312) to receive fluid therefrom.Type: GrantFiled: May 22, 2006Date of Patent: April 20, 2010Assignee: International Engine Intellectual Property Company, LLCInventors: Terry G. Wood, Elias P. Soupos
-
Patent number: 7575411Abstract: A compressor assembly (404) includes a compressor housing (412) having a main inlet bore (424) and a secondary inlet passage (422) that has an increasing flow cross-sectional area. The secondary inlet passage (422) is positioned in the compressor housing (412) and around the main inlet bore (424). A secondary inlet slot (426) and an outlet slot (420) fluidly connect the secondary inlet passage (422) with the main inlet bore (424). A compressor wheel (418) is in the compressor housing (412) and has a stepped portion (518) formed by at least one plurality of vanes (506). The stepped portion (518) is located adjacent to the outlet slot (420) of the housing (412).Type: GrantFiled: May 22, 2006Date of Patent: August 18, 2009Assignee: International Engine Intellectual Property Company LLCInventor: Terry G. Wood
-
Patent number: 7562528Abstract: A low-restriction turbine outlet device (200) includes a housing (202) having an internal volume (208). The internal volume (208) includes an inlet transition portion (230) and an outlet transition portion (232). An inlet port (204) that is formed in the housing (202) is in fluid communication with an outlet port (206) that is also formed in the housing (202). A mounting flange (216) is connected to the housing (202), a first set of stiffening ribs (218) and a second set of stiffening ribs (220) each connect the mounting flange (216) to the housing (202).Type: GrantFiled: December 20, 2006Date of Patent: July 21, 2009Assignee: International Engine Intellectual Property Company LLCInventor: Terry G. Wood
-
Patent number: 7476090Abstract: A turbocharger (300) for an internal combustion engine (500) includes a center housing (304) connected to a turbine housing (302) and a compressor housing (306). A shaft (318) is in a bore (314) of the center housing (304). An oil supply passage (328) is in fluid communication with the bore (314). An oil drain passage (310) is in fluid communication with a oil cavity (334) and the bore (314). A vent passage (330) is in fluid communication with the oil cavity (334) and an internal volume (520) of the internal combustion engine (500). Oil flow passes through the first passage (328) and the drain passage (310) during operation of the internal combustion engine (500). A first pressure of air (P1) in the oil cavity (334) is about equal to a second pressure of air (P2) in the internal volume (520) of the internal combustion engine (500).Type: GrantFiled: October 11, 2005Date of Patent: January 13, 2009Assignee: International Engine Intellectual Property Company, LLCInventor: Terry G. Wood
-
Patent number: 7448212Abstract: An internal combustion engine (100) includes a turbocharger having a turbine (108) and a compressor (118) with an air inlet (120) and a charge air outlet (119). An electronic actuator (200) has an internal cavity (226). An intake manifold (104) is in fluid communication with the charge air outlet (119) of the compressor (118) through a cooled charge air passage (126). A bleed air passage (136) fluidly connects the cooled charge air passage (126), at a bleed air point (134), with the internal cavity (226) of the electronic actuator (200).Type: GrantFiled: February 27, 2006Date of Patent: November 11, 2008Assignee: International Engine Intellectual Property Company, LLCInventor: Terry G. Wood
-
Publication number: 20080148728Abstract: A low-restriction turbine outlet device (200) includes a housing (202) having an internal volume (208). The internal volume (208) includes an inlet transition portion (230) and an outlet transition portion (232). An inlet port (204) that is formed in the housing (202) is in fluid communication with an outlet port (206) that is also formed in the housing (202). A mounting flange (216) is connected to the housing (202), a first set of stiffening ribs (218) and a second set of stiffening ribs (220) each connect the mounting flange (216) to the housing (202).Type: ApplicationFiled: December 20, 2006Publication date: June 26, 2008Applicant: International Engine Intellectual Property Company, LLCInventor: Terry G. Wood
-
Patent number: 7380445Abstract: A method for qualifying turbocharger performance includes the step of operating a turbocharger at a single test condition (402). A set of data may be acquired from a set of operating parameters of the turbocharger (404) operating at the test condition. The set of data acquired may be compared to a set of operating ranges (406) that are deemed acceptable, and a determination may be made as to whether the set of data falls within the acceptable operating ranges (408). Performance of the turbocharger may then be qualified (412, 414) based on an outcome of the determination (410).Type: GrantFiled: June 30, 2006Date of Patent: June 3, 2008Assignee: International Engine Intellectual Property Company, LLCInventor: Terry G. Wood
-
Publication number: 20080011070Abstract: A method for qualifying turbocharger performance includes the step of operating a turbocharger at a single test condition (402). A set of data may be acquired from a set of operating parameters of the turbocharger (404) operating at the test condition. The set of data acquired may be compared to a set of operating ranges (406) that are deemed acceptable, and a determination may be made as to whether the set of data falls within the acceptable operating ranges (408). Performance of the turbocharger may then be qualified (412, 414) based on an outcome of the determination (410).Type: ApplicationFiled: June 30, 2006Publication date: January 17, 2008Applicant: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLCInventor: Terry G. Wood
-
Publication number: 20070269308Abstract: A compressor assembly (404) includes a compressor housing (412) having a main inlet bore (424) and a secondary inlet passage (422) that has an increasing flow cross-sectional area. The secondary inlet passage (422) is positioned in the compressor housing (412) and around the main inlet bore (424). A secondary inlet slot (426) and an outlet slot (420) fluidly connect the secondary inlet passage (422) with the main inlet bore (424). A compressor wheel (418) is in the compressor housing (412) and has a stepped portion (518) formed by at least one plurality of vanes (506). The stepped portion (518) is located adjacent to the outlet slot (420) of the housing (412).Type: ApplicationFiled: May 22, 2006Publication date: November 22, 2007Inventor: Terry G. Wood
-
Publication number: 20070266705Abstract: A compressor assembly (304) includes a compressor housing (312) having a main air inlet (324) and an annular wall (328) defining an inducer bore (325). A secondary inlet passage (322) is disposed around the inducer bore (325). The secondary inlet passage (322) has an inlet slot (320) operatively intersecting the inducer bore (325) to permit the entry of a fluid thereinto through an inlet port (327). The inlet slot (320) advantageously defines an augmented inducer diameter region (331). Preferably the secondary inlet passage (322) may be selectively partially or completely isolated from the main air inlet (324). A compressor wheel (318) is located in the compressor housing (312) and has a stepped portion (330) formed by at least one plurality of vanes (238) operatively associated with the augmented inducer diameter region (331) adjacent to the inlet slot (320) of the housing (312) to receive fluid therefrom.Type: ApplicationFiled: May 22, 2006Publication date: November 22, 2007Inventors: Terry G. Wood, Elias P. Soupos
-
Patent number: 7000393Abstract: A valve (50) selectively shunts exhaust gas around a stage (20T) of a turbocharger turbine (20) under control of a control system that selectively renders an EGR system (38) active and inactive and that develops a value for a set-point of operation for the valve. The control system comprises a first map set (60, 142) containing data that the control system uses to the exclusion of data in a second map set (80, 148) to develop the set-point value when the EGR system is active. When the EGR system is inactive, the control system uses the data in the second map set to the exclusion of the data in the first map set to develop the set-point value.Type: GrantFiled: April 14, 2005Date of Patent: February 21, 2006Assignee: International Engine Intellectual Property Company, LLCInventors: Terry G. Wood, Grzegorz Siuchta, Wesley J. Terry
-
Patent number: 6434938Abstract: A turbocharger (32) creates intake manifold boost for a diesel engine (10). At times, exhaust valve opening is increasingly retarded in relation to the engine operating cycle to cause the turbocharger to increase boost, engine fueling is also increased in relation to the increased boost, and in response to any incipient surging of the compressor resulting from such increasingly retarded exhaust valve opening and such increased engine fueling, compressed charge air is bled from the intake manifold to counter the incipient surging and thereby avoid any significant turbocharger surge.Type: GrantFiled: July 16, 2001Date of Patent: August 20, 2002Assignee: International Engine Intellectual Property Company, L.L.C.Inventors: Jinhui Sun, Xinqun Gui, Terry G. Wood, Steven T. Omachi
-
Patent number: 5079921Abstract: An exhaust back pressure control system includes a valve in the exhaust outlet of a turbocharger of an internal combustion engine which is controlled by an engine control microcomputer. When the valve is moved toward a closed position, it restricts the exhaust flow, thereby increasing back pressure and friction within the engine by producing an artificial load thereon, and thus speeds up the warming process taking place within the engine upon starting thereof. The valve is moved by an actuating piston within a hydraulic cylinder using engine oil pressure controlled by an electrically operated valve receiving a pulse width modulated operating signal from the engine microcomputer, the operating signal being generated to provide a desired back pressure as a function of engine coolant temperature, engine speed, engine fuel comsumption, and actual back pressure. Operation of the system is enabled if the ambient air temperature is below 2.degree. C.Type: GrantFiled: June 11, 1990Date of Patent: January 14, 1992Assignee: Navistar International Transporation Corp.Inventors: James C. McCandless, Milan E. Zlock, Terry G. Wood, Dale A. Oehlerking, Titus J. Iwaszkiewicz