Patents by Inventor Terry George Collins

Terry George Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240014610
    Abstract: A method for making an RF connector having an outer conductor and an inner conductor includes the steps of plating the outer conductor and the inner conductor of the RF connector with at least one corrosion-resistant metallic material; dispensing and/or injecting a material comprising an epoxy phenol novolac based resin. in a volume between the outer conductor and the inner conductor of the connector; heating the RF connector with the injected material to a temperature between about 150° C. to about 380° C. in a substantially dry nitrogen-based environment; and allowing the RF connector to cool.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: Terry George Collins, Charlotte Diane Milia, Casey Roy Stein
  • Patent number: 11804680
    Abstract: A method for making an RF connector having an outer conductor and an inner conductor includes the steps of plating the outer conductor and the inner conductor of the RF connector with at least one corrosion-resistant metallic material; dispensing and/or injecting a material comprising an epoxy phenol novolac based resin. in a volume between the outer conductor and the inner conductor of the connector; heating the RF connector with the injected material to a temperature between about 150° C. to about 380° C. in a substantially dry nitrogen-based environment; and allowing the RF connector to cool.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: October 31, 2023
    Assignee: CORNING OPTICAL COMMUNICATIONS RF LLC
    Inventors: Terry George Collins, Charlotte Diane Milia, Casey Roy Stein
  • Publication number: 20220102924
    Abstract: A method for making an RF connector having an outer conductor and an inner conductor includes the steps of plating the outer conductor and the inner conductor of the RF connector with at least one corrosion-resistant metallic material; dispensing and/or injecting a material comprising an epoxy phenol novolac based resin. in a volume between the outer conductor and the inner conductor of the connector; heating the RF connector with the injected material to a temperature between about 150° C. to about 380° C. in a substantially dry nitrogen-based environment; and allowing the RF connector to cool.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: Terry George Collins, Charlotte Diane Milia, Casey Roy Stein
  • Patent number: 9676045
    Abstract: Electrodes, components, apparatuses, and methods for electrochemical machining (ECM) are disclosed. ECM may be employed to provide burr-free or substantially burr-free ECM of electrically-conductive workpieces (e.g. shrouds). As one non-limiting example, the electrically-conductive workpiece may be a shroud that is used as an electrical component in electronics boards. While the ECM components, apparatuses, and methods disclosed herein reduce burrs, ECM can provide imprecise machining and cause stray erosions to occur in the machined electrically-conductive workpiece. In this regard, the electrodes, components, apparatuses, and methods for ECM disclosed herein provide features that allow for precise machining of the machined electrically-conductive workpiece and also allow avoidance of stray erosions in the machined electrically-conductive workpiece.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 13, 2017
    Assignee: Corning Optical Communications RF LLC
    Inventors: Terry George Collins, Dominick John Forenz, Mark Lee Humphrey
  • Publication number: 20120217163
    Abstract: Electrodes, components, apparatuses, and methods for electrochemical machining (ECM) are disclosed. ECM may be employed to provide burr-free or substantially burr-free ECM of electrically-conductive workpieces (e.g. shrouds). As one non-limiting example, the electrically-conductive workpiece may be a shroud that is used as an electrical component in electronics boards. While the ECM components, apparatuses, and methods disclosed herein reduce burrs, ECM can provide imprecise machining and cause stray erosions to occur in the machined electrically-conductive workpiece. In this regard, the electrodes, components, apparatuses, and methods for ECM disclosed herein provide features that allow for precise machining of the machined electrically-conductive workpiece and also allow avoidance of stray erosions in the machined electrically-conductive workpiece.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Inventors: Terry George Collins, Dominick John Forenz, Mark Lee Humphrey