Patents by Inventor Terry Kin-Ting Ko

Terry Kin-Ting Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8969982
    Abstract: A multi-layered bottom electrode for an MTJ device on a silicon nitride substrate is described. It comprises a bilayer of alpha tantalum on ruthenium which in turn lies on a nickel chrome layer over a second tantalum layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: March 3, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 8372210
    Abstract: A cleaning method is provided for brush cleaning a surface of a substrate. The method comprises scrubbing a first surface of the substrate with a brush having a first surface geometry; and then scrubbing the first surface of the substrate with a brush having a second surface geometry, wherein the first and the second surface geometries are different. Numerous other aspects are provided.
    Type: Grant
    Filed: October 11, 2008
    Date of Patent: February 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Garrett H. Sin, Terry Kin-Ting Ko, Sidney P. Huey
  • Patent number: 8273666
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a protective coating that is partly consumed during etching of the alpha tantalum portion of said bottom electrode. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: September 25, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Publication number: 20110133300
    Abstract: A multi-layered bottom electrode for an MTJ device on a silicon nitride substrate is described. It comprises a bilayer of alpha tantalum on ruthenium which in turn lies on a nickel chrome layer over a second tantalum layer.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 9, 2011
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Publication number: 20110076785
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a protective coating that is partly consumed during etching of the alpha tantalum portion of said bottom electrode. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 31, 2011
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 7838436
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a layer of ruthenium near the silicon nitride surface. The ruthenium is a good electrical conductor and it responds differently from Ta and TaN to certain etchants. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”. Thus, said included layer of ruthenium may be used as an etch stop layer during the etching of Ta and/or TaN while the latter materials may be used to form a hard mask for etching the ruthenium without significant corrosion of the silicon nitride surface.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 23, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 7508700
    Abstract: An MTJ pattern layout for a memory device is disclosed that includes two CMP assist features outside active MTJ device blocks. A first plurality of dummy MTJ devices is located in two dummy bands formed around an active MTJ device block. The inner dummy band is separated from the outer dummy band by the MTJ ILD layer and has a MTJ device density essentially the same as the MTJ device block. The outer dummy band has a MTJ device density at least 10% greater than the inner dummy band. The inner dummy band serves to minimize CMP edge effect in the MTJ device block while the outer dummy band improves planarization. A second plurality of dummy MTJ devices is employed in contact pads outside the outer dummy band and is formed between a WL ILD layer and a BIT ILD layer thereby minimizing delamination of the MTJ ILD layer.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 24, 2009
    Assignee: Magic Technologies, Inc.
    Inventors: Tom Zhong, Terry Kin Ting Ko, Chyu-Jiuh Torng, Wai-Ming Kan, Adam Zhong
  • Publication number: 20090031512
    Abstract: A cleaning method is provided for brush cleaning a surface of a substrate. The method comprises scrubbing a first surface of the substrate with a brush having a first surface geometry; and then scrubbing the first surface of the substrate with a brush having a second surface geometry, wherein the first and the second surface geometries are different. Numerous other aspects are provided.
    Type: Application
    Filed: October 11, 2008
    Publication date: February 5, 2009
    Inventors: Garrett H. Sin, Terry Kin-Ting Ko, Sidney P. Huey
  • Publication number: 20080225576
    Abstract: An MTJ pattern layout for a memory device is disclosed that includes two CMP assist features outside active MTJ device blocks. A first plurality of dummy MTJ devices is located in two dummy bands formed around an active MTJ device block. The inner dummy band is separated from the outer dummy band by the MTJ ILD layer and has a MTJ device density essentially the same as the MTJ device block. The outer dummy band has a MTJ device density at least 10% greater than the inner dummy band. The inner dummy band serves to minimize CMP edge effect in the MTJ device block while the outer dummy band improves planarization. A second plurality of dummy MTJ devices is employed in contact pads outside the outer dummy band and is formed between a WL ILD layer and a BIT ILD layer thereby minimizing delamination of the MTJ ILD layer.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Inventors: Tom Zhong, Terry Kin Ting Ko, Chyu-Jiuh Torng, Wai-Ming Kan, Adam Zhong
  • Publication number: 20080090307
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a layer of ruthenium near the silicon nitride surface. The ruthenium is a good electrical conductor and it responds differently from Ta and TaN to certain etchants. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”. Thus, said included layer of ruthenium may be used as an etch stop layer during the etching of Ta and/or TaN while the latter materials may be used to form a hard mask for etching the ruthenium without significant corrosion of the silicon nitride surface.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 17, 2008
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 7086933
    Abstract: A method and apparatus for delivering a polishing fluid to a chemical mechanical polishing surface is provided. In one embodiment, an apparatus for delivering a polishing fluid to a chemical mechanical polishing surface includes an arm having a plurality of holes formed in the arm for retaining a plurality of polishing fluid delivery tubes. Each of the tubes are disposed through one of the holes and coupled to the arm. The number of holes exceeds the number of tubes, thereby allowing the distribution of polishing fluid to a polishing surface and correspondingly the local polishing rates across a diameter of a substrate being polished to be controlled.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: August 8, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Lidia Vereen, Peter N. Skarpelos, Brian J. Downum, Patrick Williams, Terry Kin-Ting Ko, Christopher Heung-Gyun Lee, Kenneth Reese Reynolds, John Hearne, Daniel Hachnochi
  • Publication number: 20030199229
    Abstract: A method and apparatus for delivering a polishing fluid to a chemical mechanical polishing surface is provided. In one embodiment, an apparatus for delivering a polishing fluid to a chemical mechanical polishing surface includes an arm having a plurality of holes formed in the arm for retaining a plurality of polishing fluid delivery tubes. Each of the tubes are disposed through one of the holes and coupled to the arm. The number of holes exceeds the number of tubes, thereby allowing the distribution of polishing fluid to a polishing surface and correspondingly the local polishing rates across a diameter of a substrate being polished to be controlled.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 23, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Lidia Vereen, Peter N. Skarpelos, Brian J. Downum, Patrick Williams, Terry Kin-Ting Ko, Christopher Heung-Gyun Lee, Kenneth Reese Reynolds, John Hearne, Daniel Hachnochi