Patents by Inventor Terry L. Cooke

Terry L. Cooke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130183012
    Abstract: A furcation system of an optical fiber assembly includes a fan-out and a transition tube. The fan-out includes a surface and stations. The surface is flexible such that the surface is configured to be changed from flat to curved. The stations are coupled to one side of the surface and are configured to receive and hold sub-units of an optical fiber cable, while allowing the sub-units to project from the stations. The stations are spaced apart from one another such that the stations provide separation between the sub-units received by the stations. Bending of the surface moves the stations from a planar arrangement to a three-dimensional arrangement such that the sub-units may project from the stations of the fan-out in planar and three-dimensional arrays.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 18, 2013
    Inventors: Alma Delia Cabanne Lopez, Terry L. Cooke, Christopher S. Houser, Diego Maldonalo Jimenez, Matthew W. Smith, James M. Wilson
  • Publication number: 20130163932
    Abstract: An optical fiber cable includes a jacket and modules including optical fibers. The jacket has an interior that forms an elongate conduit between proximal and distal ends. The modules extend lengthwise through the conduit without being bound together in a pattern of twisting or wound together in a pattern of stranding. Also, the jacket and modules are sized such that free space is provided within the conduit between the modules and the jacket. The jacket is at least ten meters long, and the orientation, alignment, and size of the modules allow individual modules to slide lengthwise relative to one another through the conduit. Pulling one of the modules from the proximal end of the jacket while holding the other modules fixed at the distal end of the jacket draws the one module further into the jacket on the distal end of the jacket.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 27, 2013
    Inventors: Terry L. Cooke, Christopher S. Houser, William c. Hurley, Samuel D. Navé, James M. Wilson
  • Publication number: 20130148935
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Application
    Filed: January 22, 2013
    Publication date: June 13, 2013
    Applicant: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, JR., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Publication number: 20130136401
    Abstract: A ferrule assembly includes a ferrule comprising a ferrule boot insertion end and a ferrule boot. The ferrule boot includes a lower component and an upper component. The lower component of the ferrule boot includes a first grooved surface that includes a plurality of first grooves that are dimensioned to receive a plurality of optical fibers. The upper component includes a second grooved surface that includes a plurality of second grooves that are dimensioned to receive the plurality of optical fibers. In one embodiment, the lower component is coupled to the upper component such that individual ones of the plurality of first grooves are substantially aligned with individual ones of the plurality of second grooves. The lower component and the upper component also define a fiber insertion end and a ferrule insertion end of the ferrule boot. The ferrule insertion end of the ferrule boot is at least partially positioned within the ferrule at the ferrule boot insertion end.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: Terry L. Cooke, Tory A. Klavuhn, Matthew W. Smith, Wesley Allan Yates
  • Patent number: 8452148
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 28, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, David L. Dean, Jr., Juan Garcia, Elmer Mariano, Manuel Lopez, Juan Miguel Gonzalez
  • Patent number: 8437597
    Abstract: Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1 U rack space.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 7, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Harley J. Staber
  • Patent number: 8433171
    Abstract: A fiber optic apparatus comprising a fiber optic equipment and a routing region at the fiber optic equipment is disclosed. At least 98 optical fibers, at least 434 optical fibers, at least 866 optical fibers, and at least 1152 optical fibers route in the routing region per 1-U shelf space, wherein a maximum 10?12 bit-error-rate and 0.75 dB attenuation is maintained per duplex optical signal carried by the optical fibers. Additionally, the routing region may be configured such that one or more of the optical fibers make a maximum of one bend in the routing region and route generally horizontally in the routing region. One or more of the optical fibers may be terminated simplex, duplex fiber or multiple fiber optic connectors.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 30, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Publication number: 20130011105
    Abstract: A clip, configured to support a furcation body, includes a keyhole member, a catch, a cover, and an arm. The keyhole member may be received in a keyhole of a mounting surface, and is offset from a bottom of the clip via a slot guide such that when the bottom of the clip slides along the mounting surface, a top of the keyhole member engages an underside of the mounting surface to lock the clip to the mounting surface. The catch extends from the bottom of the clip in a direction that the keyhole member is offset from the bottom of the clip. The cover is coupled to a wall of the clip extending from the bottom of the clip in a direction away from the catch. The arm extends from the clip in a direction away from the catch and provides a handling point above the clip.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Inventors: Edward K. Barlowe, Terry L. Cooke, David L. Dean, JR., Tory A. Klavuhn, Jeffery M. Walters
  • Patent number: 8328432
    Abstract: A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Christopher S. Houser, James M. Wilson
  • Patent number: 8326107
    Abstract: A fiber optic apparatus having a fiber optic equipment tray and an extension adapted to receive, organize and manage fiber optic cables routed to the fiber optic equipment tray is disclosed. The fiber optic equipment tray has a front, a rear, a base, and at least one extension rail. The extension movably attaches to the fiber optic equipment tray at the extension rail and, thereby, slidably extends from and retracts toward the rear of the fiber optic equipment tray. The extension comprises a shelf and a cable management tray hingedly attached to the shelf. The shelf moves over the base when the extension extends from and retracts toward the fiber optic equipment tray. The cable management tray is in planer alignment with the fiber optic equipment tray when the extension is retracted, and allowed to pivot downwardly when the extension is extended. At least one furcation plug tray attaches to the cable management tray.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 4, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, David L. Dean, Jr., Juan Garcia, Manuel Lopez, Juan Miguel Gonzalez
  • Publication number: 20120301090
    Abstract: Molded fiber optic cable furcation assemblies, and related fiber optic components, assemblies, and methods are disclosed. In one embodiment, an end portion of a fiber optic cable with a portion of a cable jacket removed to expose optical fibers and/or a cable strength member(s) therein and thereafter placing the cable into a mold for creating a molded furcation plug about the end portion of the fiber optic cable. The furcation plug may be overmolded about the end portion of the fiber optic cable. The molded furcation plug can be used to pull a fiber optic cable without damaging the optical fiber(s) disposed within the fiber optic cable. The molded furcation plug is advantageous since it manufactured with fewer parts, without epoxy, and/or without a labor intensive process that may be difficult to automate.
    Type: Application
    Filed: June 16, 2011
    Publication date: November 29, 2012
    Inventors: Timothy S. Cline, Terry L. Cooke, Tory A. Klavuhn, Mario L. Tooley
  • Patent number: 8301004
    Abstract: A fiber optic cable assembly including a fiber optic cable and a furcation body is disclosed. An attachment feature can be provided to mount the furcation body to a mounting surface of fiber optic equipment for securing a portion of the fiber optic cable assembly to the fiber optic equipment. The attachment feature may include an integrated anti-rotation feature to inhibit rotation of the furcation body with respect to a mounting surface. The anti-rotation feature is provided by one or more generally planar surfaces of the furcation body for abutting with at least one complementary planar mounting surface.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Clyde B. Mabry, III, Daniel S. McGranahan, Jeffrey M. Walters
  • Patent number: 8290333
    Abstract: Fiber optic cable assemblies having furcation bodies with features that are advantageous for manufacturing are disclosed along with methods of making the same. The furcation body include at least one anti-rotation feature for mounting the furcation body and a viewing portion and/or weep hole. The viewing portion is advantageous since it allows the observation during filling of the cavity with an epoxy, adhesive, or the like to strain relieve components of the fiber optic cable assembly within the furcation body. Simply stated, the viewing portion is translucent or clear for observing the filling of the furcation body and detecting if an air bubbles/air pockets are formed so that they can be reduced and/or eliminated. The furcation body may also have a weep hole for allowing air bubbles/air pockets to escape. Additionally, the furcation body of the fiber optic cable assembly may be secured within a clip or other suitable structure for mounting the same.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 16, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Edward K. Barlowe, Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Jeffery M. Walters
  • Patent number: 8286325
    Abstract: Embodiments disclosed include fiber optic module housings used for fiber optic modules and methods for manufacture and assembly of same. The fiber optic module housing comprise at least one hinge to allow a component of the housing to be opened and closed to allow easy access to the fiber optic module housing and/or its internal chamber. The hinge may be a living hinge disposed within a single part to allow each side of the living hinge to be bent or folded. The hinge may be disposed on a panel configured to support one or more fiber optic components to allow the panel to be opened and closed about the module housing for access. The fiber optic module housing may also be entirely comprised of a single part employing the use of living hinges between foldable parts. In this manner, no sides or parts of the fiber optic module housing need be provided as separate parts.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 16, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn
  • Patent number: 8280216
    Abstract: Fiber optic drawers supporting fiber optic modules are disclosed. The drawer is movable about a chassis. At least one fiber optic equipment tray is received in the drawer. The fiber optic equipment tray(s) is movable about the drawer and configured to receive at least one fiber optic module. The fiber optic module(s) is movable about a fiber optic equipment tray. In this manner, enhanced access can be provided to the fiber optic module(s) and their fiber optic connections. The drawer can moved out from the chassis to provide access to fiber optic equipment tray(s) and fiber optic module(s). The fiber optic equipment tray(s) can be moved out from the drawer to provide enhanced access to fiber optic module(s). The fiber optic module(s) can be moved from fiber optic equipment tray(s) to provide further enhanced access to fiber optic module(s). The drawer may also be tiltable about the chassis.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: October 2, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Mark R. Dagley, David L. Dean, Jr., Tory A. Klavuhn, Juan Garcia Martinez, Diana Rodriguez, Octavio Beltran Salinas, Manuel Alejandro Lopez Sanchez, Kevin L. Strause
  • Publication number: 20120128305
    Abstract: A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Inventors: Terry L. Cooke, David L. Dean, JR., Christopher S. Houser, James M. Wilson
  • Patent number: 8184938
    Abstract: Fiber optic equipment that supports one or more rear-installable fiber optic modules is disclosed. The fiber optic equipment is comprised of a chassis defining a front end and a rear section. At least one guide system is disposed in the chassis and configured to receive at least one fiber optic module. The guide system may be provided in the form of a rail guide system. The at least one guide system receives the at least one fiber optic module from the rear section on the chassis and is configured to guide the fiber optic module toward the front end of the chassis. In this manner, a technician can make fiber optic connections to fiber optic modules and also install the fiber optic modules into the fiber optic equipment from the rear section of the chassis to reduce time and/or labor in making fiber optic connections.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 22, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, David L. Dean, Jr., Juan Garcia, Elmer Mariano, Manuel Lopez, Juan Miguel Gonzalez
  • Publication number: 20120106911
    Abstract: Embodiments disclosed in the detailed description include stacked fiber optic modules and fiber optic equipment supporting stacked fiber optic modules. In one embodiment, a stacked fiber optic module is provided. This embodiment of the stacked fiber optic module comprises a body having a first sub-body and a second sub-body where the second sub-body can translate relative to the first sub-body. The stacked fiber optic module further comprises a first plurality of fiber optic components disposed in a first longitudinal axis in the at least one front side. The stacked fiber optic module also further comprises a second plurality of fiber optic components disposed adjacent the first plurality of fiber optic components in a second longitudinal axis parallel or substantially parallel to the first longitudinal axis in the at least one front side.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 3, 2012
    Inventors: Terry L. Cooke, David L. Dean, JR., Juan Garcia Martinez, Sebastian Schreiber
  • Publication number: 20120106897
    Abstract: A fiber optic connector that employs an optical fiber guide member, and a cable assembly that uses the connector are disclosed. The connector has a connector housing formed by mateable sections. The connector housing defines a housing passage having opposite connector-end and channel-end portions that define respective connector-end and channel-end passages, with the channel-end portion configured to be arranged adjacent the end of a fiber optic cable. An optical fiber guide member is disposed in the channel-end passage and has a first transition end that faces the connector-end passage. The optical fiber guide member has a conduit configured to loosely confine and guide the optical fibers to the connector-end passage. Connector sub-assemblies can be operably supported at the connector-end portion supporting end portions of the optical fiber.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Timothy S. Cline, Terry L. Cooke, David L. Dean, JR., Tory A. Klavuhn
  • Patent number: 8135257
    Abstract: Furcation management structures and fiber optic shelf assemblies including one or more furcation management structures are disclosed. The furcation management structures are disposed in a chassis of a fiber optic shelf assembly and define a mounting surface for mounting at least one furcation body of a fiber optic cable assembly thereto. The furcation management structure may allow the fiber optic shelf assemblies to provide a greater density of fiber optic cable assemblies to support high density fiber optic equipment. Moreover, the furcation management structures provides the craft with an organized mounting structure that is relatively quick and easy to remove, rearrange, and/or reconfigure.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 13, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Manuel Alejandro Lopez Sanchez, Harley J. Staber