Patents by Inventor Terry L. Marker

Terry L. Marker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10647933
    Abstract: Hydropyrolysis processes that accompany the generation of activated carbon as an end product, as well as processes for the production of activated carbon from hydropyrolysis char, are described. Representative processes comprise upgrading, by steam activation, char that is formed from solid biomass-containing feedstocks and/or solid biomass derived feedstocks, such as lignocellulosic feedstocks (e.g., wood). Such processes are associated with a number of advantages in terms of achieving operating synergies, obtaining desirable intermediate material and end product properties, reducing environmental impact, and significantly improving economic attractiveness.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 12, 2020
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Martin B. Linck, Michael J. Roberts
  • Patent number: 10619105
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 14, 2020
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 10392566
    Abstract: Hydropyrolysis processes are described, in which differing types of feedstocks, including at least one biorenewable feedstock, namely a biomass-containing feedstock, may be co-processed to allow enhancements in operating conditions and/or product properties, depending on changing customer requirements and/or overall market demands. According to specific embodiments, an aliphatic hydrocarbon precursor or an aromatic hydrocarbon precursor is co-processed with the biomass-containing feedstock to enhance an operating condition (e.g., a reactor temperature profile) of the hydropyrolysis process and/or a property (e.g., cetane number) of a liquid product (e.g., a diesel boiling range fraction) obtained from a substantially fully deoxygenated hydrocarbon liquid.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: August 27, 2019
    Assignee: Gas Technology Institute
    Inventors: Martin B. Linck, Terry L. Marker, Michael J. Roberts, Larry G. Felix
  • Patent number: 9938466
    Abstract: A hydropyrolysis process comprises feeding both (i) hydrogen and (ii) a biomass-containing feedstock or a biomass-derived feedstock, to a hydropyrolysis reactor vessel. The process comprises producing a CO2-containing vapor stream and at least one liquid product. A CO2 product, separated from the CO2-containing vapor stream, is advantageously used for at least one inertization function of the hydropyrolysis process. Representative inertization functions include operation of solids transport equipment, blanketing of liquid containers, drying of biomass-containing feedstock or biomass-derived feedstock, conveying or separating solids, and combinations thereof. Importantly, CO2 products utilized for these inertization functions may be obtained predominantly, if not completely (depending on the nature of the feedstock), from renewable carbon in biomass.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: April 10, 2018
    Assignee: Gas Technology Institute
    Inventors: Martin B. Linck, Terry L. Marker, Michael J. Roberts, Larry G. Felix
  • Publication number: 20170204333
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 20, 2017
    Inventors: Larry G. FELIX, Martin B. LINCK, Terry L. MARKER, Michael J. ROBERTS
  • Publication number: 20170137294
    Abstract: Hydropyrolysis processes that accompany the generation of activated carbon as an end product, as well as processes for the production of activated carbon from hydropyrolysis char, are described. Representative processes comprise upgrading, by steam activation, char that is formed from solid biomass-containing feedstocks and/or solid biomass derived feedstocks, such as lignocellulosic feedstocks (e.g., wood). Such processes are associated with a number of advantages in terms of achieving operating synergies, obtaining desirable intermediate material and end product properties, reducing environmental impact, and significantly improving economic attractiveness.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 18, 2017
    Inventors: Terry L. MARKER, Martin B. LINCK, Michael J. ROBERTS
  • Patent number: 9650574
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 16, 2017
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 9593282
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: March 14, 2017
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 9512364
    Abstract: This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: December 6, 2016
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Publication number: 20160312125
    Abstract: Hydropyrolysis processes are described, in which differing types of feedstocks, including at least one biorenewable feedstock, namely a biomass-containing feedstock, may be co-processed to allow enhancements in operating conditions and/or product properties, depending on changing customer requirements and/or overall market demands. According to specific embodiments, an aliphatic hydrocarbon precursor or an aromatic hydrocarbon precursor is co-processed with the biomass-containing feedstock to enhance an operating condition (e.g., a reactor temperature profile) of the hydropyrolysis process and/or a property (e.g., cetane number) of a liquid product (e.g., a diesel boiling range fraction) obtained from a substantially fully deoxygenated hydrocarbon liquid.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Martin B. LINCK, Terry L. MARKER, Michael J. ROBERTS, Larry G. FELIX
  • Patent number: 9447328
    Abstract: A self-sustaining process for producing liquid fuels from biomass in which the biomass is hydropyrolyzed in a reactor vessel containing molecular hydrogen and a deoxygenating catalyst, producing a partially deoxygenated pyrolysis liquid, which is hydrogenated using a hydroconversion catalyst, producing a substantially fully deoxygenated pyrolysis liquid and a gaseous mixture comprising CO and light hydrocarbon gases (C1-C4). The gaseous mixture is reformed in a steam reformer, producing reformed molecular hydrogen, which is then introduced into the reactor vessel for hydropyrolizing the biomass. The deoxygenated liquid product is further processed to produce diesel fuel and gasoline.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 20, 2016
    Assignee: Gas Technology Institute
    Inventors: Terry L Marker, Larry G Felix, Martin B Linck
  • Publication number: 20160068758
    Abstract: A hydropyrolysis process comprises feeding both (i) hydrogen and (ii) a biomass-containing feedstock or a biomass-derived feedstock, to a hydropyrolysis reactor vessel. The process comprises producing a CO2-containing vapor stream and at least one liquid product. A CO2 product, separated from the CO2-containing vapor stream, is advantageously used for at least one inertization function of the hydropyrolysis process. Representative inertization functions include operation of solids transport equipment, blanketing of liquid containers, drying of biomass-containing feedstock or biomass-derived feedstock, conveying or separating solids, and combinations thereof. Importantly, CO2 products utilized for these inertization functions may be obtained predominantly, if not completely (depending on the nature of the feedstock), from renewable carbon in biomass.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Martin B. LINCK, Terry L. MARKER, Michael J. ROBERTS, Larry G. FELIX
  • Publication number: 20160002540
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: Larry G. FELIX, Martin B. LINCK, Terry L. MARKER, Michael J. ROBERTS
  • Publication number: 20150141716
    Abstract: This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor.
    Type: Application
    Filed: September 22, 2014
    Publication date: May 21, 2015
    Inventors: Terry L. MARKER, Larry G. FELIX, Martin B. LINCK, Michael J. ROBERTS
  • Publication number: 20150027184
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Terry L. MARKER, Larry G. FELIX, Martin B. LINCK, Michael J. ROBERTS
  • Patent number: 8915981
    Abstract: A multi-stage method and apparatus for producing methane from biomass in which the biomass is hydropyrolyzed in a reactor vessel containing molecular hydrogen and a deoxygenating catalyst, the output of which is hydrogenated using a hydroconversion catalyst. The output from the hydroconversion step is provided to a water-gas-shift process providing a mixture of H2O and product gases including CO2, H2, and methane. The mixture components are separated, resulting in a product stream comprising substantially only methane.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: December 23, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Howard S. Meyer, Dennis Leppin
  • Patent number: 8865953
    Abstract: A process has been developed for producing diesel boiling range fuel from renewable feedstocks such as plant and animal fats and oils, the process providing for sulfur management. The process involves catalytically treating a renewable feedstock by hydrogenating and deoxygenating to provide a hydrocarbon fraction useful as a diesel boiling range fuel. The hydrocarbon fraction is isomerized to improve cold flow properties. A selective separation such as a hot high pressure hydrogen stripper is used to remove at least the carbon oxides from the first zone effluent before entering the isomerization zone, and to provide liquid recycle to the treating zone at pressure and temperature. A vapor stream is separated from the isomerization effluent and at least carbon dioxide is removed using at least one selective or flexible amine solution absorber. The resulting hydrogen-rich stream is recycled to the deoxygenation reaction zone.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventors: John P. Brady, Tom N. Kalnes, Terry L. Marker
  • Patent number: 8865954
    Abstract: A process has been developed for producing diesel boiling range fuel from renewable feedstocks such as fats and oils from plants and animals where the process provides for sulfur-component management. The process involves catalytically treating a renewable feedstock by hydrogenating and deoxygenating to provide a hydrocarbon fraction useful as a diesel boiling range fuel. A selective separation such as a hot high pressure hydrogen stripper may be used to remove at least the carbon oxides from the first zone effluent and provide a liquid recycle stream at pressure and temperature. A vapor stream is separated from the net process effluent and at least carbon dioxide is removed using at least one selective or flexible amine absorber. The resulting hydrogen-rich stream is recycled to the reaction zone.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Terry L. Marker, John P. Brady
  • Patent number: 8859831
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 14, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 8841495
    Abstract: This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 23, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts