Patents by Inventor Terry L. White

Terry L. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9427720
    Abstract: A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: August 30, 2016
    Assignee: UT-BATELLE, LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Publication number: 20140205511
    Abstract: A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: UT-Battelle, LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Patent number: 8679592
    Abstract: A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 25, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Publication number: 20110079505
    Abstract: A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 7, 2011
    Applicant: UT-BATTELLE,LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Patent number: 7824495
    Abstract: A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: November 2, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Patent number: 7786253
    Abstract: An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: August 31, 2010
    Assignees: Ut-Battelle, LLC, Sentech, Inc.
    Inventors: Felix L. Paulauskas, Terry L. White, Daniel M. Sherman
  • Publication number: 20090263295
    Abstract: An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.
    Type: Application
    Filed: May 14, 2009
    Publication date: October 22, 2009
    Applicant: UT-BATTELLE, LLC
    Inventors: Felix L. Paulauskas, Terry L. White, Daniel M. Sherman
  • Patent number: 7534854
    Abstract: An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: May 19, 2009
    Assignee: UT-Battelle, LLC
    Inventors: Felix L. Paulauskas, Terry L. White, Daniel M. Sherman
  • Patent number: 6514449
    Abstract: The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: February 4, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Felix L. Paulauskas, Terry L. White, Timothy S. Bigelow
  • Patent number: 6211621
    Abstract: A microwave energy plasma source comprises a cylinder with a top lid that allows a centrally located plasma tube to be supplied with a process gas. On opposite sides of the cylinder walls are located a pair of push-pull air fans that provide a cooling air flow through the inside chamber of the cylinder. Orthogonal to the pair of fans, a microwave energy applicator is mounted to the cylinder walls and has a ring type slow wave structure which surrounds the plasma tube. The bottoms of the cylinder and the plasma tube are connected through a coupler to a process chamber in which is situated a semiconductor wafer being processed. In alternative embodiments, the cylinder has included a movable planar floor and ceiling between which is formed a tunable microwave cavity. Such top and bottom tuning plates are adjusted such that the microwave source impedance is optimally matched to the microwave applicator terminating impedance by affecting the tuned frequency of the ring type slow wave structure.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: April 3, 2001
    Assignee: GaSonics International
    Inventors: James W. Caughran, Terry L. White, Daniel G. Nagal, Sidney Hung Luu
  • Patent number: 6175095
    Abstract: A microwave applicator has exactly six equal length parallel rods equally distributed in 60° angular intervals in a circle, and at circumferential intervals that are one half the wavelength of operation of a microwave power source. The circumference is therefore preferred to be three wavelengths. The top ends of every rod terminate in a top planar shorting ring. The bottom ends of every rod terminate in a bottom planar shorting ring which is perpendicular to each of the rods and which is parallel to the top planar shorting ring. Intermediate to the two planar shorting rings are an upper and lower planar feed ring that are each parallel to the outside planar shorting rings. The upper planar feed ring connects to odd numbered rods and the lower planar feed ring connects to even numbered rods. A ridged tapered waveguide is connected to the feed rings at a point intersected by any one of the rods.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: January 16, 2001
    Assignee: GaSonics International
    Inventors: Niles K. MacDonald, Terry L. White, James W. Caughran
  • Patent number: 5635143
    Abstract: A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 3, 1997
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry L. White, Timothy S. Bigelow, Charles R. Schaich, Don Foster, Jr.
  • Patent number: 5324485
    Abstract: A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.
    Type: Grant
    Filed: August 12, 1992
    Date of Patent: June 28, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Terry L. White
  • Patent number: 4996403
    Abstract: An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.
    Type: Grant
    Filed: February 5, 1990
    Date of Patent: February 26, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Terry L. White