Patents by Inventor Terry M. Sanderson

Terry M. Sanderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9879959
    Abstract: A control system for a missile includes a plurality of control surfaces that can be arrayed across a surface of the missile body, and a controller connected to the control surfaces to selectively move the control surfaces between an aerodynamic stowed position where the control surfaces conform to the surface of the body, and a deployed control position removed from the aerodynamic stowed position where the control surfaces extend from the surface of the body to interact with airflow over the body. The control surfaces are made of a material that includes a shape-memory alloy. Heating the control surfaces causes the shape-memory alloy to move the control surfaces from the aerodynamic stowed position to the deployed control position. By selectively extending and retracting the control surfaces, the control system provides the ability to control the missile's direction of travel or to reduce roll about a longitudinal axis of the body.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: January 30, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Ward D. Lyman, Frederick B. Koehler, Terry M. Sanderson
  • Patent number: 9490873
    Abstract: Methods and apparatus for a near-field signal system to generate signals underwater for navigation and/or communication. In one embodiment, a system includes a signal processing module coupled to a first antenna to transmit near-field signals underwater and a second antenna to receive near-field signals underwater transmitted by the first antenna. In one embodiment, a wetsuit includes an integrated near-field signal system.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 8, 2016
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Thomas P. Mccreery, Robert Rinker, Darrell R. Rogers, Ross D. Rosenwald, Terry M. Sanderson, David R. Sar, Ernest D. Fasse
  • Publication number: 20160099751
    Abstract: Methods and apparatus for a near-field signal system to generate signals underwater for navigation and/or communication. In one embodiment, a system includes a signal processing module coupled to a first antenna to transmit near-field signals underwater and a second antenna to receive near-field signals underwater transmitted by the first antenna. In one embodiment, a wetsuit includes an integrated near-field signal system.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Applicant: Raytheon Company
    Inventors: Frederick B. Koehler, Thomas P. Mccreery, Robert Rinker, Darrell R. Rogers, Ross D. Rosenwald, Terry M. Sanderson, David R. Sar, Ernest D. Fasse
  • Patent number: 9145702
    Abstract: A system includes a structure configured to undergo oscillatory movement. The system also includes a friction damping clamp coupled to the structure. The friction damping clamp includes a housing having a groove. The friction damping clamp also includes a roller positioned at least partially within the groove, where the groove has first and second ramps. The roller is configured to move up each ramp of the groove so that more compression is applied on the structure and to move down each ramp of the groove so that less compression is applied on the structure. The roller may be configured to apply more compression on the structure to increase friction between portions of the structure, to apply less compression on the structure to decrease friction between the portions of the structure, and to apply substantially no compression on the structure when the roller is located at a center of the groove.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: September 29, 2015
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Frederick B. Koehler, Thomas P. McCreery
  • Publication number: 20150119479
    Abstract: A method of making a reconfigurable three-dimensional shape includes the following steps: (i) moving multiple print heads in three dimensions relative to a printing surface, where the print heads include a conductor print head and a polymer print head; (ii) depositing a conductive material from the conductor print head; and (iii) depositing a shape-memory polymer from the polymer print head. The depositing steps form a volumetric shape of a shape-memory polymer, capable of changing shape, with a conductive material capable of acting as a heating element integrally formed in the volumetric shape. The method can further include the steps of heating the shape-memory polymer above a transition temperature, changing the shape of the volumetric shape following the heating step, and then allowing the shape-memory polymer to cool below the transition temperature to fix the new volumetric shape.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Raytheon Company
    Inventors: Frederick B. Koehler, Terry M. Sanderson
  • Publication number: 20150108268
    Abstract: A control system for a missile includes a plurality of control surfaces that can be arrayed across a surface of the missile body, and a controller connected to the control surfaces to selectively move the control surfaces between an aerodynamic stowed position where the control surfaces conform to the surface of the body, and a deployed control position removed from the aerodynamic stowed position where the control surfaces extend from the surface of the body to interact with airflow over the body. The control surfaces are made of a material that includes a shape-memory alloy. Heating the control surfaces causes the shape-memory alloy to move the control surfaces from the aerodynamic stowed position to the deployed control position. By selectively extending and retracting the control surfaces, the control system provides the ability to control the missile's direction of travel or to reduce roll about a longitudinal axis of the body.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Raytheon Company
    Inventors: Ward D. Lyman, Frederick B. Koehler, Terry M. Sanderson
  • Patent number: 8950795
    Abstract: A robotic finger includes a shape-memory alloy and a shape-memory polymer connected to and adjacent to the shape-memory alloy. Heating the shape-memory polymer causes it to soften, heating the shape-memory alloy causes the alloy to bend in the direction of the shape-memory polymer to press the shape-memory polymer against an object to be grasped, and cooling the shape-memory polymer causes it to stiffen and to retain its shape. An opposing member is positioned to cooperate with the finger to grasp an object positioned between the finger and the opposing member. A selectively controllable heat source is capable of applying heat to the finger.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 10, 2015
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Ward D. Lyman, Terry M. Sanderson
  • Patent number: 8864065
    Abstract: An air vehicle wing includes foldable ribs coupled to a leading-edge spar. The ribs each have multiple rib segments which are foldable (hinged) relative to each other. Extension linkages, each with multiple extension linkage segments, pass through openings in the rib segments, and may be coupled to the rib segments with pin couplings, able to change relative angle between the individual rib segments and the extension linkage segments to which they are coupled. A skin may cover the ribs, to provide an outer surface of the wing that may be unfolded as the wing is expanded from a stowed, small-chord condition, to a deployed, large-chord condition.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Raytheon Company
    Inventors: Frederick B Koehler, Terry M Sanderson, Jack W Reany
  • Publication number: 20140306473
    Abstract: A robotic finger includes a shape-memory alloy and a shape-memory polymer connected to and adjacent to the shape-memory alloy. Heating the shape-memory polymer causes it to soften, heating the shape-memory alloy causes the alloy to bend in the direction of the shape-memory polymer to press the shape-memory polymer against an object to be grasped, and cooling the shape-memory polymer causes it to stiffen and to retain its shape. An opposing member is positioned to cooperate with the finger to grasp an object positioned between the finger and the opposing member. A selectively controllable heat source is capable of applying heat to the finger.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Frederick B. Koehler, Ward D. Lyman, Terry M. Sanderson
  • Publication number: 20140215936
    Abstract: A system includes a structure configured to undergo oscillatory movement. The system also includes a friction damping clamp coupled to the structure. The friction damping clamp includes a housing having a groove. The friction damping clamp also includes a roller positioned at least partially within the groove, where the groove has first and second ramps. The roller is configured to move up each ramp of the groove so that more compression is applied on the structure and to move down each ramp of the groove so that less compression is applied on the structure. The roller may be configured to apply more compression on the structure to increase friction between portions of the structure, to apply less compression on the structure to decrease friction between the portions of the structure, and to apply substantially no compression on the structure when the roller is located at a center of the groove.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: Raytheon Company
    Inventors: Terry M. Sanderson, Frederick B. Koehler, Thomas P. McCreery
  • Patent number: 8783604
    Abstract: An aircraft wing has hinged ribs, and a skin covering the ribs. The ribs each include plural rib sections, array from the leading edge of the wing, to the trailing edge of the wing, and a lock to hold the rib sections together in a deployed state or condition. The wings are initially in a stowed state, with the ribs and the rib sections having a curved chord, and deploy to the deployed state, in which the ribs have a straightened chord that defines an airfoil state. The wing may have foam material between the ribs to allow the wings to expand in the wingspan direction, for instance after the ribs have been placed in the deployed state.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 22, 2014
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Michael S. Cherry, Jack W. Reany
  • Patent number: 8757601
    Abstract: A structural member includes a split beam within a box structure. The split beam may be a segmented beam that includes multiple segments for each of its parts. Movement of the split beam parts within the box structure, as the structural member flexes, dissipates energy and adds to the damping of the structural member.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 24, 2014
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson
  • Patent number: 8727079
    Abstract: A structural member includes a box structure that encloses a beam, which may be a split beam or a split segmented beam. The structural member includes a pressure mechanism that varies a pressure force or a friction force between the beam and the box structure. Movement of the parts within the box structure, against the force of the pressure mechanism, as the structural member flexes, dissipates energy and adds to the damping of the structural member.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 20, 2014
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson
  • Patent number: 8714476
    Abstract: A wing includes a spar, and a pair of flexible skins that are attached to the spar. The spar is at the leading edge of the wing, and the skins extend toward the trailing edge of the wing. The wing deploys from a stowed condition, in which the skins are curved in the same direction around a fuselage of an aircraft, to a deployed condition, in which the skins provide the wing with an airfoil cross-sectional shape, for example with the skins curve in opposite direction. A lock is used to maintain the skins in the deployed state, with the lock for example located at the trailing edge of the wing. The lock may be a mechanical mechanism that automatically locks the wing in the deployed state, preventing the wing from returning to the stowed state.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: May 6, 2014
    Assignee: Raytheon Company
    Inventors: Jack W. Reany, Terry M. Sanderson
  • Patent number: 8632073
    Abstract: Methods and apparatus for a seal according to various aspects of the present invention include a seal operating in conjunction with a housing and a removable cover. A portion of the seal is attached to the housing and another portion of the seal is attached to the removable cover to enclose a joint between the housing and the removable cover. A cutter cuts the seal, which allows the removable cover to be removed.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: January 21, 2014
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Cesar Sanchez
  • Patent number: 8573535
    Abstract: A shape-change material includes a shape memory material layer with an electrically conductive layer on a surface of the shape memory material layer. The conductive material may be used to heat the shape memory material by electrical resistance heating. The conductive material may be a primary heater, providing the heating to cause softening or shape change in the shape memory material, or may be a secondary heater in conjunction with a greater amount of heating from a primary heater, such as a conductive plate that provides electrical resistance heating to a surface of the shape memory material on an opposite side of the shape memory material from the conductive material. One use for the shape-change material is as the skin material for a shape changing material.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 5, 2013
    Assignee: Raytheon Company
    Inventor: Terry M. Sanderson
  • Patent number: 8528863
    Abstract: A laminated wing structure includes at least one layer of metal material and at least one layer of a shape memory polymer (SMP) material. The SMP is heated to a temperature in its glass transition band Tg to roll the wing around the air vehicle into a stored position. The metal layer(s) must be thin enough to remain below its yield point when rolled up. In preparation for launch, the SMP material is thermally activated allowing the strain energy stored in the layer of metal material to return the wing to its deployed position at launch. Once deployed, the SMP cools to its glassy state. The SMP material may be reinforced with fiber to form a polymer matrix composite (PMC). SMP may be used to provide shear strain relief for multiple metal layers. By offloading the motive force required to return the wing to its original deployed position from the SMP to the metal, the polymer does not acquire a permanent set and the wing may be deployed accurately.
    Type: Grant
    Filed: May 10, 2009
    Date of Patent: September 10, 2013
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Brian J. Gowler, David R. Sar, Thomas P. McCreery
  • Publication number: 20130101823
    Abstract: A foam material is an open-cell material, with ordered voids forming an interconnected network of voids within a continuous material matrix. The voids may be spherical. There may be different sizes of voids, with the smaller voids located between larger voids. The continuous material matrix may include a polymer material, such as a shape memory polymer. Balloons or spheres may be included within the continuous material matrix to further reduce the density of the foam material. The foam material may have a global density of 20% or less. The density of the material may vary, perhaps continuously, with position within the foam material. The foam material may be made by producing an array of a removable material corresponding to the shape of the voids, forming the continuous material matrix around the removable material, and then removing the removable material, such as by dissolving the removable material.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Inventors: Terry M. Sanderson, David R. Sar, Jack W. Reany
  • Publication number: 20130099049
    Abstract: A wing includes a spar, and a pair of flexible skins that are attached to the spar. The spar is at the leading edge of the wing, and the skins extend toward the trailing edge of the wing. The wing deploys from a stowed condition, in which the skins are curved in the same direction around a fuselage of an aircraft, to a deployed condition, in which the skins provide the wing with an airfoil cross-sectional shape, for example with the skins curve in opposite direction. A lock is used to maintain the skins in the deployed state, with the lock for example located at the trailing edge of the wing. The lock may be a mechanical mechanism that automatically locks the wing in the deployed state, preventing the wing from returning to the stowed state.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Inventors: Jack W. Reany, Terry M. Sanderson
  • Publication number: 20130099050
    Abstract: An aircraft wing has hinged ribs, and a skin covering the ribs. The ribs each include plural rib sections, array from the leading edge of the wing, to the trailing edge of the wing, and a lock to hold the rib sections together in a deployed state or condition. The wings are initially in a stowed state, with the ribs and the rib sections having a curved chord, and deploy to the deployed state, in which the ribs have a straightened chord that defines an airfoil state. The wing may have foam material between the ribs to allow the wings to expand in the wingspan direction, for instance after the ribs have been placed in the deployed state.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Inventors: Terry M. Sanderson, Michael S. Cherry, Jack W. Reany