Patents by Inventor Terry Sparkman
Terry Sparkman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250051651Abstract: A method for producing renewable diesel includes introducing a primary feedstock comprising biologically-derived triglycerides with catalyst poisons into a first reaction chamber and hydrolyzing the primary feedstock within the first reaction and liquid-liquid extraction chamber for at least an hour such that the reacted triglycerides are separated into an aqueous solution comprising glycerol and catalyst poisons, and an intermediate feedstock comprising free fatty acids and catalyst poisons. The method also includes distilling the intermediate feedstock to separate the intermediate feedstock into a purified intermediate stream and a lower volume bottom stream containing unreacted triglyceride, diglyceride, monoglyceride, FFA and catalyst poisons. The method also includes combining the purified intermediate feedstock with a hydrogen stream and converting, in a second reaction chamber comprising a metallic catalyst bed, the purified intermediate feedstock into a product comprising long-chain alkanes.Type: ApplicationFiled: October 30, 2024Publication date: February 13, 2025Applicant: Green Carbon Development, LLCInventors: Thomas Bass, James Rolston, Terry Sparkman
-
Patent number: 12146110Abstract: A method for producing renewable diesel includes introducing a primary feedstock comprising biologically-derived triglycerides with catalyst poisons into a first reaction chamber and hydrolyzing the primary feedstock within the first reaction and liquid-liquid extraction chamber for at least an hour such that the reacted triglycerides are separated into an aqueous solution comprising glycerol and catalyst poisons, and an intermediate feedstock comprising free fatty acids and catalyst poisons. The method also includes distilling the intermediate feedstock to separate the intermediate feedstock into a purified intermediate stream and a lower volume bottom stream containing unreacted triglyceride, diglyceride, monoglyceride, FFA and catalyst poisons. The method also includes combining the purified intermediate feedstock with a hydrogen stream and converting, in a second reaction chamber comprising a metallic catalyst bed, the purified intermediate feedstock into a product comprising long-chain alkanes.Type: GrantFiled: August 24, 2023Date of Patent: November 19, 2024Assignee: Green Carbon Development, LLCInventors: Thomas Bass, James Rolston, Terry Sparkman
-
Publication number: 20230407185Abstract: A method for producing renewable diesel includes introducing a primary feedstock comprising biologically-derived triglycerides with catalyst poisons into a first reaction chamber and hydrolyzing the primary feedstock within the first reaction and liquid-liquid extraction chamber for at least an hour such that the reacted triglycerides are separated into an aqueous solution comprising glycerol and catalyst poisons, and an intermediate feedstock comprising free fatty acids and catalyst poisons. The method also includes distilling the intermediate feedstock to separate the intermediate feedstock into a purified intermediate stream and a lower volume bottom stream containing unreacted triglyceride, diglyceride, monoglyceride, FFA and catalyst poisons. The method also includes combining the purified intermediate feedstock with a hydrogen stream and converting, in a second reaction chamber comprising a metallic catalyst bed, the purified intermediate feedstock into a product comprising long-chain alkanes.Type: ApplicationFiled: August 24, 2023Publication date: December 21, 2023Applicant: Green Carbon Development, LLCInventors: Thomas Bass, James Rolston, Terry Sparkman
-
Patent number: 11773332Abstract: A method for producing renewable diesel includes introducing a primary feedstock comprising biologically-derived triglycerides with catalyst poisons into a first reaction chamber and hydrolyzing the primary feedstock within the first reaction and liquid-liquid extraction chamber for at least an hour such that the reacted triglycerides are separated into an aqueous solution comprising glycerol and catalyst poisons, and an intermediate feedstock comprising free fatty acids and catalyst poisons. The method also includes distilling the intermediate feedstock to separate the intermediate feedstock into a purified intermediate stream and a lower volume bottom stream containing unreacted triglyceride, diglyceride, monoglyceride, FFA and catalyst poisons. The method also includes combining the purified intermediate feedstock with a hydrogen stream and converting, in a second reaction chamber comprising a metallic catalyst bed, the purified intermediate feedstock into a product comprising long-chain alkanes.Type: GrantFiled: July 1, 2022Date of Patent: October 3, 2023Assignee: Green Carbon Development, LLCInventors: Thomas Bass, James Rolston, Terry Sparkman
-
Patent number: 11718795Abstract: A system and method for renewable diesel synthesis utilizes a triglyceride feedstock derived from biological sources. The first step involves hydrolysis of the triglycerides into an intermediate feedstock comprising a mixture of free fatty acids and glycerol (separated from the FFA by decantation and then distilled). The FFA is then further processed in a distillation step to produce a stream free of catalyst poisons and utilized as feedstock for hydrotreatment in a renewable diesel production process. By converting the initial triglyceride feedstock to an FFA feedstock, the need to hydrotreat at typical high temperature that promote the decarboxylation reaction is obviated, thereby reducing the production of CO2, generating a significantly higher proportion of saturated, long chain C14, C16 or C18 hydrocarbons (as opposed to short-chain carbons such as propane), and the more valuable glycerol product is secured.Type: GrantFiled: December 21, 2021Date of Patent: August 8, 2023Assignee: Green Carbon Development, LLCInventors: Thomas Bass, James Rolston, Terry Sparkman
-
Publication number: 20220333016Abstract: A method for producing renewable diesel includes introducing a primary feedstock comprising biologically-derived triglycerides with catalyst poisons into a first reaction chamber and hydrolyzing the primary feedstock within the first reaction and liquid-liquid extraction chamber for at least an hour such that the reacted triglycerides are separated into an aqueous solution comprising glycerol and catalyst poisons, and an intermediate feedstock comprising free fatty acids and catalyst poisons. The method also includes distilling the intermediate feedstock to separate the intermediate feedstock into a purified intermediate stream and a lower volume bottom stream containing unreacted triglyceride, diglyceride, monoglyceride, FFA and catalyst poisons. The method also includes combining the purified intermediate feedstock with a hydrogen stream and converting, in a second reaction chamber comprising a metallic catalyst bed, the purified intermediate feedstock into a product comprising long-chain alkanes.Type: ApplicationFiled: July 1, 2022Publication date: October 20, 2022Inventors: Thomas Bass, James Rolston, Terry Sparkman
-
Publication number: 20220195313Abstract: A system and method for renewable diesel synthesis utilizes a triglyceride feedstock derived from biological sources. The first step involves hydrolysis of the triglycerides into an intermediate feedstock comprising a mixture of free fatty acids and glycerol (separated from the FFA by decantation and then distilled). The FFA is then further processed in a distillation step to produce a stream free of catalyst poisons and utilized as feedstock for hydrotreatment in a renewable diesel production process. By converting the initial triglyceride feedstock to an FFA feedstock, the need to hydrotreat at typical high temperature that promote the decarboxylation reaction is obviated, thereby reducing the production of CO2, generating a significantly higher proportion of saturated, long chain C14, C16 or C18 hydrocarbons (as opposed to short-chain carbons such as propane), and the more valuable glycerol product is secured.Type: ApplicationFiled: December 21, 2021Publication date: June 23, 2022Inventors: THOMAS BASS, James Rolston, Terry Sparkman