Patents by Inventor Terry Sparks

Terry Sparks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8587070
    Abstract: A method of forming a semiconductor structure comprises forming a first layer of silicon and then forming a second, silicon germanium, layer adjacent the silicon layer. A thin third layer of silicon is then formed adjacent the second layer. A gate structure is then formed upon the third layer of silicon using convention Complementary Metal Oxide Semiconductor processes. Trenches are then formed into the second layer and the structure is then exposed to a thermal gaseous chemical etchant, for example heated hydrochloric acid. The etchant removes the silicon germanium, thereby forming a Silicon-On-Nothing structure. Thereafter, conventional CMOS processing techniques are applied to complete the structure as a Metal Oxide Semiconductor Field Effect Transistor, including the formation of spacer walls from silicon nitride, the silicon nitride also filling a cavity formed beneath the third layer of silicon by removal of the silicon germanium.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 19, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Terry Sparks
  • Publication number: 20120126289
    Abstract: A method of forming a semiconductor structure comprises forming a first layer of silicon and then forming a second, silicon germanium, layer adjacent the silicon layer. A thin third layer of silicon is then formed adjacent the second layer. A gate structure is then formed upon the third layer of silicon using convention Complementary Metal Oxide Semiconductor processes. Trenches are then formed into the second layer and the structure is then exposed to a thermal gaseous chemical etchant, for example heated hydrochloric acid. The etchant removes the silicon germanium, thereby forming a Silicon-On-Nothing structure. Thereafter, conventional CMOS processing techniques are applied to complete the structure as a Metal Oxide Semiconductor Field Effect Transistor, including the formation of spacer walls from silicon nitride, the silicon nitride also filling a cavity formed beneath the third layer of silicon by removal of the silicon germanium.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 24, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Terry Sparks
  • Patent number: 8105890
    Abstract: A method of forming a semiconductor structure comprises forming a first layer of silicon and then forming a second, silicon germanium, layer adjacent the silicon layer. A thin third layer of silicon is then formed adjacent the second layer. A gate structure is then formed upon the third layer of silicon using convention Complementary Metal Oxide Semiconductor processes. Trenches are then formed into the second layer and the structure is then exposed to a thermal gaseous chemical etchant, for example heated hydrochloric acid. The etchant removes the silicon germanium, thereby forming a Silicon-On-Nothing structure. Thereafter, conventional CMOS processing techniques are applied to complete the structure as a Metal Oxide Semiconductor Field Effect Transistor, including the formation of spacer walls from silicon nitride, the silicon nitride also filling a cavity formed beneath the third layer of silicon by removal of the silicon germanium.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 31, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Terry Sparks
  • Patent number: 7935631
    Abstract: A cap layer for a metal feature such as a copper interconnect on a semiconductor wafer is formed by immersion plating a more noble metal (e.g. Pd) onto the copper interconnect and breaking up, preferably by mechanical abrasion, loose nodules of the noble metal that form on the copper interconnect surface. The mechanical abrasion removes plated noble metal which is only loosely attached to the copper surface, and then continued exposure of the copper surface to immersion plating chemicals leads to plating at new sites on the surface until a continuous, well-bonded noble metal layer has formed. The method can be implemented conveniently by supplying immersion plating chemicals to the surface of a wafer undergoing CMP or undergoing scrubbing in a wafer-scrubber apparatus.
    Type: Grant
    Filed: July 4, 2005
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Terry Sparks
  • Publication number: 20080224314
    Abstract: A cap layer for a metal feature such as a copper interconnect on a semiconductor wafer is formed by immersion plating a more noble metal (e.g. Pd) onto the copper interconnect and breaking up, preferably by mechanical abrasion, loose nodules of the noble metal that form on the copper interconnect surface. The mechanical abrasion removes plated noble metal which is only loosely attached to the copper surface, and then continued exposure of the copper surface to immersion plating chemicals leads to plating at new sites on the surface until a continuous, well-bonded noble metal layer has formed. The method can be implemented conveniently by supplying immersion plating chemicals to the surface of a wafer undergoing CMP or undergoing scrubbing in a wafer-scrubber apparatus.
    Type: Application
    Filed: July 4, 2005
    Publication date: September 18, 2008
    Applicant: Freescale Semiconductor, Inc
    Inventor: Terry Sparks
  • Publication number: 20080207004
    Abstract: A method of forming a semiconductor structure comprises forming a first layer of silicon and then forming a second, silicon germanium, layer adjacent the silicon layer. A thin third layer of silicon is then formed adjacent the second layer. A gate structure is then formed upon the third layer of silicon using convention Complementary Metal Oxide Semiconductor processes. Trenches are then formed into the second layer and the structure is then exposed to a thermal gaseous chemical etchant, for example heated hydrochloric acid. The etchant removes the silicon germanium, thereby forming a Silicon-On-Nothing structure. Thereafter, conventional CMOS processing techniques are applied to complete the structure as a Metal Oxide Semiconductor Field Effect Transistor, including the formation of spacer walls from silicon nitride, the silicon nitride also filling a cavity formed beneath the third layer of silicon by removal of the silicon germanium.
    Type: Application
    Filed: June 30, 2005
    Publication date: August 28, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventor: Terry Sparks