Patents by Inventor Terry Spooner

Terry Spooner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9658523
    Abstract: A wavy line interconnect structure that accommodates small metal lines and large vias is disclosed. A lithography mask design used to pattern metal line trenches uses optical proximity correction (OPC) techniques to approximate wavy lines using rectangular opaque features. The large vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. Instead, a sacrificial layer allows etching of an underlying thick dielectric block, while protecting narrow features of the trenches that correspond to the metal line interconnects. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By lifting the shrink constraint for vias, thereby allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: May 23, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Terry Spooner, Nicole A. Saulnier
  • Patent number: 9466563
    Abstract: An integrated circuit includes first and second metallization levels. The first metallization level includes a first metal routing path. The second metallization level includes a dielectric layer having a via opening formed therein extending vertically through the dielectric layer to reach a top surface of the first metal routing path. A metal plug is deposited at a bottom of the via opening in direct contact with the first metal routing path. A remaining open area of the via opening is filled with a metal material to define a second metal routing path. The metal plug is formed of cobalt or an alloy including cobalt, and has an aspect ratio of greater than 0.3.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: October 11, 2016
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Mignot, Terry Spooner, James John Kelly
  • Publication number: 20160155701
    Abstract: An integrated circuit includes first and second metallization levels. The first metallization level includes a first metal routing path. The second metallization level includes a dielectric layer having a via opening formed therein extending vertically through the dielectric layer to reach a top surface of the first metal routing path. A metal plug is deposited at a bottom of the via opening in direct contact with the first metal routing path. A remaining open area of the via opening is filled with a metal material to define a second metal routing path. The metal plug is formed of cobalt or an alloy including cobalt, and has an aspect ratio of greater than 0.3.
    Type: Application
    Filed: December 1, 2014
    Publication date: June 2, 2016
    Applicants: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Mignot, Terry Spooner, James John Kelly
  • Publication number: 20150279784
    Abstract: A wavy line interconnect structure that accommodates small metal lines and large vias is disclosed. A lithography mask design used to pattern metal line trenches uses optical proximity correction (OPC) techniques to approximate wavy lines using rectangular opaque features. The large vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. Instead, a sacrificial layer allows etching of an underlying thick dielectric block, while protecting narrow features of the trenches that correspond to the metal line interconnects. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By lifting the shrink constraint for vias, thereby allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Terry Spooner, Nicole A. Saulnier
  • Publication number: 20080042283
    Abstract: An interconnect structure and method of fabricating the same in which the critical dimension of the conductive features are not altered by a plasma damaged layer are provided. In accordance with the present invention, a chemically etching dielectric material is subjected to a treatment step which modifies the density of the dielectric material such that the treated surfaces become denser than the bulk dielectric not subjected to the treatment. The treatment step is performed prior to deposition of the noble metal liner.
    Type: Application
    Filed: September 19, 2007
    Publication date: February 21, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sampath Purushothaman, Muthumanickam Sankarapandian, Hosadurga Shobha, Terry Spooner
  • Publication number: 20070246792
    Abstract: A sputter-etching method employed to achieve a thinned down noble metal liner layer deposited on the surface or field of an intermediate back end of the line (BEOL) interconnect structure. The noble metal liner layer is substantially thinned down to a point where the effect of the noble metal has no significant effect in the chemical-mechanical polishing (CMP) process. The noble metal liner layer may be completely removed by sputter etching to facilitate effective planarization by chemical-mechanical polishing to take place.
    Type: Application
    Filed: April 25, 2006
    Publication date: October 25, 2007
    Inventors: Chih-Chao Yang, Shyng-Tsong Chen, Shom Ponoth, Terry Spooner
  • Publication number: 20070222081
    Abstract: When an interconnect structure is built on porous ultra low k (ULK) material, the bottom of the trench and/or via is usually damaged by a following metallization process which may be suitable for dense higher dielectric materials. Embodiment of the present invention may provide a method of forming an interconnect structure on an inter-layer dielectric (ILD) material. The method includes steps of treating an exposed area of said ILD material to create a densified area, and metallizing said densified area.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Applicant: International business machine corporation
    Inventors: Shyng-Tsong Chen, Qinghung Lin, Kelly Malone, Sanjay Mehta, Terry Spooner, Chih-Chao Yang
  • Publication number: 20070205482
    Abstract: An interconnect structure including a gouging feature at the bottom of one of the via openings and a method of forming the same are provided. In accordance with the present invention, the method of forming the interconnect structure does not disrupt the coverage of the deposited diffusion barrier in the overlying line opening, nor does it introduce damages caused by Ar sputtering into the dielectric material including the via and line openings. In accordance with the present invention, such an interconnect structure contains a diffusion barrier layer only within the via opening, but not in the overlying line opening. This feature enhances both mechanical strength and diffusion property around the via opening areas without decreasing volume fraction of conductor inside the line openings.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 6, 2007
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Terry Spooner, Oscar Straten
  • Publication number: 20070166996
    Abstract: Disclosed is a method of making a semiconductor structure, wherein the method includes forming an interlayer dielectric (ILD) layer on a semiconductor layer, forming a conductive plating enhancement layer (PEL) on the ILD, patterning the ILD and PEL, depositing a seed layer into the pattern formed by the ILD and PEL, and then plating copper on the seed layer. The PEL serves to decrease the resistance across the wafer so to facilitate the plating of the copper. The PEL preferably is an optically transparent and conductive layer.
    Type: Application
    Filed: January 17, 2006
    Publication date: July 19, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shom Ponoth, Steven Chen, John Fitzsimmons, Terry Spooner
  • Publication number: 20070148826
    Abstract: An interconnect structure which includes a plating seed layer that has enhanced conductive material, preferably, Cu, diffusion properties is provided that eliminates the need for utilizing separate diffusion and seed layers. Specifically, the present invention provides an oxygen/nitrogen transition region within a plating seed layer for interconnect metal diffusion enhancement. The plating seed layer may include Ru, Ir or alloys thereof and the interconnect conductive material may include Cu, Al, AlCu, W, Ag, Au and the like. Preferably, the interconnect conductive material is Cu or AlCu. In more specific terms, the present invention provides a single seeding layer which includes an oxygen/nitrogen transition region sandwiched between top and bottom seed regions. The presence of the oxygen/nitrogen transition region within the plating seed layer dramatically enhances the diffusion barrier resistance of the plating seed.
    Type: Application
    Filed: March 6, 2007
    Publication date: June 28, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Simon Gaudet, Christian Lavoie, Shom Ponoth, Terry Spooner
  • Publication number: 20070117342
    Abstract: A method comprises depositing a dielectric film layer, a hard mask layer, and a patterned photo resist layer on a substrate. The method further includes selectively etching the dielectric film layer to form sub-lithographic features by reactive ion etch processing and depositing a barrier metal layer and a copper layer. The method further includes etching the barrier metal layer and hard mask layer by gas cluster ion beam (GCIB) processing.
    Type: Application
    Filed: November 22, 2005
    Publication date: May 24, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shyng-Tsong Chen, John Fitzsimmons, Shom Ponoth, Terry Spooner
  • Publication number: 20070080429
    Abstract: An interconnect structure which includes a plating seed layer that has enhanced conductive material, preferably, Cu, diffusion properties is provided that eliminates the need for utilizing separate diffusion and seed layers. Specifically, the present invention provides an oxygen/nitrogen transition region within a plating seed layer for interconnect metal diffusion enhancement. The plating seed layer may include Ru, Ir or alloys thereof, and the interconnect conductive material may include Cu, Al, AlCu, W, Ag, Au and the like. Preferably, the interconnect conductive material is Cu or AlCu. In more specific terms, the present invention provides a single seeding layer which includes an oxygen/nitrogen transition region sandwiched between top and bottom seed regions. The presence of the oxygen/nitrogen transition region within the plating seed layer dramatically enhances the diffusion barrier resistance of the plating seed.
    Type: Application
    Filed: October 7, 2005
    Publication date: April 12, 2007
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Simon Gaudet, Christian Lavoie, Shom Ponoth, Terry Spooner
  • Publication number: 20060292852
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Application
    Filed: August 9, 2006
    Publication date: December 28, 2006
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, INFINEON TECHNOLOGIES NORTH AMERICA CORP.
    Inventors: Lawrence Clevenger, Andrew Cowley, Timothy Dalton, Mark Hoinkis, Steffen Kaldor, Erdem Kaltalioglu, Kaushik Kumar, Douglas La Tulipe, Jochen Schacht, Andrew Simon, Terry Spooner, Yun-Yu Wang, Clement Wann, Chih-Chao Yang
  • Patent number: 7135398
    Abstract: An advanced back-end-of-line (BEOL) interconnect structure having a hybrid dielectric is disclosed. The inter-layer dielectric (ILD) for the via level is preferably different from the ILD for the line level. In a preferred embodiment, the via-level ILD is formed of a low-k SiCOH material, and the line-level ILD is formed of a low-k polymeric thermoset material.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: November 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: John A. Fitzsimmons, Stephen E. Greco, Jia Lee, Stephen M. Gates, Terry Spooner, Matthew S. Angyal, Habib Hichri, Theordorus E. Standaert, Glenn A. Biery
  • Publication number: 20060157857
    Abstract: A conducting material comprising: a conducting core region comprising copper and from 0.001 atomic percent to 0.6 atomic percent of one or more metals selected from iridium, osmium and rhenium; and an interfacial region. The interfacial region comprises at least 80 atomic percent or greater of the one or more metals. The invention is also directed to a method of making a conducting material comprising: providing an underlayer; contacting the underlayer with a seed layer, the seed layer comprising copper and one or more metals selected from iridium, osmium and rhenium; depositing a conducting layer comprising copper on the seed layer, and annealing the conducting layer at a temperature sufficient to cause grain growth in the conducting layer, yet minimize the migration of the one or more alloy metals from the seed layer to the conducting layer.
    Type: Application
    Filed: March 16, 2006
    Publication date: July 20, 2006
    Applicant: International Business Machines Corporation
    Inventors: Michael Lane, Stefanie Chiras, Terry Spooner, Robert Rosenberg
  • Publication number: 20060084256
    Abstract: A novel interlevel contact via structure having low contact resistance and improved reliability, and method of forming the contact via. The method comprises steps of: etching an opening through an interlevel dielectric layer to expose an underlying metal (Copper) layer surface; and, performing a low energy ion implant of an inert gas (Nitrogen) into the exposed metal underneath; and, depositing a refractory liner into the walls and bottom via structure which will have a lower contact resistance due to the presence of the proceeding inert gas implantation. Preferably, the inert Nitrogen gas reacts with the underlying exposed Copper metal to form a thin layer of CuN.
    Type: Application
    Filed: October 14, 2004
    Publication date: April 20, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Lawrence Clevenger, Timothy Dalton, Patrick DeHaven, Chester Dziobkowski, Sunfei Fang, Terry Spooner, Tsong-Lin Tai, Kwong Wong, Chin-Chao Yang
  • Publication number: 20060043590
    Abstract: A chemical mechanical polishing (CMP) step is used to remove excess conductive material (e.g., Cu) overlying a low-k or ultralow-k interlevel dielectric layer (ILD) layer having trenches filled with conductive material, for a damascene interconnect structure. A reactive ion etch (RIE) or a Gas Cluster Ion Beam (GCIB) process is used to remove a portion of a liner which is atop a hard mask. A wet etch step is used to remove an oxide portion of the hard mask overlying the ILD, followed by a final touch-up Cu CMP (CMP) step which chops the protruding Cu patterns off and lands on the SiCOH hard mask. In this manner, processes used to remove excess conductive material substantially do not affect the portion of the hard mask overlying the interlevel dielectric layer.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 2, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven Shyng-Tsong Chen, Kaushik Kumar, Stephen Greco, Shom Ponoth, Terry Spooner, David Rath, Wei-Tsu Tseng
  • Publication number: 20060012014
    Abstract: The present invention provides a plastically and/or viscoelastically deformable layer that can be used in conjunction with a low-k dielectric (k of less than 4.0) to provide an electronic semiconductor structure having improved reliability. The deformable layer can be incorporated into various points within an electronic structure to dissipate energy within the structure that may cause the low-k dielectric material to crack or delaminate therefrom. Moreover, the presence of the deformable layer with the electronic structure improves the overall strength of the resultant structure.
    Type: Application
    Filed: July 15, 2004
    Publication date: January 19, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shyng-Tsong Chen, Stefanie Chiras, Michael Lane, Qinghuang Lin, Robert Rosenberg, Thomas Shaw, Terry Spooner
  • Publication number: 20060006070
    Abstract: A conducting material comprising: a conducting core region comprising copper and from 0.001 atomic percent to 0.6 atomic percent of one or more metals selected from iridium, osmium and rhenium; and an interfacial region. The interfacial region comprises at least 80 atomic percent or greater of the one or more metals. The invention is also directed to a method of making a conducting material comprising: providing an underlayer; contacting the underlayer with a seed layer, the seed layer comprising copper and one or more metals selected from iridium, osmium and rhenium; depositing a conducting layer comprising copper on the seed layer, and annealing the conducting layer at a temperature sufficient to cause grain growth in the conducting layer, yet minimize the migration of the one or more alloy metals from the seed layer to the conducting layer.
    Type: Application
    Filed: July 9, 2004
    Publication date: January 12, 2006
    Applicant: International Business Machines Corporation
    Inventors: Michael Lane, Stefanie Chiras, Terry Spooner, Robert Rosenberg, Daniel Edelstein
  • Patent number: 6917108
    Abstract: An advanced back-end-of-line (BEOL) interconnect structure having a hybrid dielectric is disclosed. The inter-layer dielectric (ILD) for the via level is preferably different from the ILD for the line level. In a preferred embodiment, the via-level ILD is formed of a low-k SiCOH material, and the line-level ILD is formed of a low-k polymeric thermoset material.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: July 12, 2005
    Assignee: International Business Machines Corporation
    Inventors: John A. Fitzsimmons, Stephen E. Greco, Jia Lee, Stephen M. Gates, Terry Spooner, Matthew S. Angyal, Habib Hichri, Theordorus E. Standaert, Glenn A. Biery