Patents by Inventor Terry Wood

Terry Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10863906
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 15, 2020
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Publication number: 20190059746
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor 402 may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Application
    Filed: October 31, 2018
    Publication date: February 28, 2019
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Patent number: 10143386
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor 402 may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: December 4, 2018
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Patent number: 9445729
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 20, 2016
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Publication number: 20150216424
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor 402 may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Application
    Filed: July 19, 2013
    Publication date: August 6, 2015
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Publication number: 20140024917
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 23, 2014
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Publication number: 20100083908
    Abstract: A calf chute tailgate particularly suited for use in calf roping competitions is disclosed. The tailgate has a pair of upright bars that are mounted to the entry of the calf chute using a pair of four-bar linkages so that during opening and closing of the gate the bars retain their upright orientation resulting a calf chute gate that is fully open across its full height permitting easy access to the chute by calves of any size and shape.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 8, 2010
    Inventors: Ken Brown, Terry Wood
  • Publication number: 20070199318
    Abstract: An internal combustion engine (100) includes a turbocharger having a turbine (108) and a compressor (118) with an air inlet (120) and a charge air outlet (119). An electronic actuator (200) has an internal cavity (226). An intake manifold (104) is in fluid communication with the charge air outlet (119) of the compressor (118) through a cooled charge air passage (126). A bleed air passage (136) fluidly connects the cooled charge air passage (126), at a bleed air point (134), with the internal cavity (226) of the electronic actuator (200).
    Type: Application
    Filed: February 27, 2006
    Publication date: August 30, 2007
    Inventor: Terry Wood
  • Publication number: 20070081906
    Abstract: A turbocharger (300) for an internal combustion engine (500) includes a center housing (304) connected to a turbine housing (302) and a compressor housing (306). A shaft (318) is in a bore (314) of the center housing (304). An oil supply passage (328) is in fluid communication with the bore (314). An oil drain passage (310) is in fluid communication with a oil cavity (334) and the bore (314). A vent passage (330) is in fluid communication with the oil cavity (334) and an internal volume (520) of the internal combustion engine (500). Oil flow passes through the first passage (328) and the drain passage (310) during operation of the internal combustion engine (500). A first pressure of air (P1) in the oil cavity (334) is about equal to a second pressure of air (P2) in the internal volume (520) of the internal combustion engine (500).
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventor: Terry Wood
  • Patent number: 7063040
    Abstract: A portable air horn apparatus. The apparatus includes an air horn adapted to generate sound when supplied with air under pressure, an air compressor adapted to generate air under pressure, an air conduit interconnecting the compressor and the air horn enabling the air under pressure generated by the compressor to be supplied to the air horn, an electric motor adapted to operate the air compressor when energized, a portable source of electrical energy, and electrical circuitry electrically connecting the portable source of electrical energy to the electric motor to enable the electric motor to be energized. The circuitry includes a manually operable on-off switch having a first position opening the circuitry and a second position closing the circuitry. A housing is provided for physically supporting and interconnecting at least the air horn, compressor, electric motor, on-off switch and portable source of electrical energy, and includes a handle adapted to be manually graspable by a user of the device.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: June 20, 2006
    Inventor: David Terry Woods
  • Patent number: 6881047
    Abstract: An apparatus and process for applying finish to an expanded filament array in a quench system with air directed inward to the filament bundle. The applicator may be used inside or proximate quench zones in a radial, pneumatic, or cross-flow quench system. The apparatus includes a spinneret, a quench zone located below said spinneret, wherein cooling gas is directed inward to an expanded filament array inside said quench zone, and an applicator inside or below said quench zone, wherein the applicator contacts the filament and delivers the finish to the expanded filament array.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: April 19, 2005
    Assignee: Invista North America S.a.r.l.
    Inventors: Steven Wayne Smith, Geoffrey David Hietpas, Richard Terry Wood
  • Publication number: 20020051880
    Abstract: An apparatus and process for applying finish to an expanded filament array in a quench system with air directed inward to the filament bundle. The applicator may be used inside or proximate quench zones in a radial, pneumatic, or cross-flow quench system. The apparatus includes a spinneret, a quench zone located below said spinneret, wherein cooling gas is directed inward to an expanded filament array inside said quench zone, and an applicator inside or below said quench zone, wherein the applicator contacts the filament and delivers the finish to the expanded filament array.
    Type: Application
    Filed: May 15, 2001
    Publication date: May 2, 2002
    Inventors: Steven Wayne Smith, Geoffrey David Hietpas, Richard Terry Wood