Patents by Inventor Terry Wright

Terry Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837970
    Abstract: A circuit is operative to extract electromagnetic wave energy from the ground via a resonant transformer in which resonance is triggered by electrical charge arcing across a spark gap. A center tap of the primary winding of the transformer is capacitively coupled to an electrode buried in the ground. In-rush current from the ground electrode is converted to a useful form (e.g., one- or three-phase 60 Hz AC) by a power conversion circuit connected to the secondary winding of the resonant transformer. The ground electrode of the capacitor coupling the grounded electrode to the center tap primary winding is the shield of a Faraday cage enclosing the resonant transformer, spark gap, and a high-voltage power supply exciting the spark gap.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: December 5, 2023
    Assignee: EARTH ENERGIES, INC.
    Inventors: John Dinwiddie, Terry Wright
  • Publication number: 20230184089
    Abstract: Sensor systems and methods for downhole pumping systems include a sensor subsystem for detecting movement of at least one component of the downhole pumping system. The sensor subsystem includes an axial motion sensor to be coupled to the at least one component of the downhole pumping system and to detect axial movement of the at least one component of the downhole pumping system and a rotational sensor to be coupled to the at least one component of the downhole pumping system and to detect rotational movement of the at least one component of the downhole pumping system by sampling rotational velocity values with the rotational sensor generated by rotation of the at least one component of the downhole pumping system.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 15, 2023
    Inventors: Terry Treiberg, Terry Wright, Eric Larson
  • Patent number: 11299745
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 12, 2022
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Terry Wright, Justin Lira, Donald Merlo, Nicole Arnold
  • Publication number: 20220098610
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Application
    Filed: August 16, 2021
    Publication date: March 31, 2022
    Inventors: Terry WRIGHT, Justin LIRA, Donald MERLO, Nicole ARNOLD
  • Publication number: 20210403934
    Abstract: This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel AAD-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a corn cell. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (or corn grain, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the corn genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.
    Type: Application
    Filed: July 28, 2021
    Publication date: December 30, 2021
    Inventors: Yunxing Cory CUI, Jill BRYAN, Donald MAUM, Greg GILLES, Terry WRIGHT, Jennifer HAMILTON, Nicole ARNOLD, Nathan VanOpdorp, Tina KAISER, Ning ZHOU
  • Patent number: 11149283
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: October 19, 2021
    Assignee: Dow Agrosciences LLC
    Inventors: Terry Wright, Justin Lira, Donald Merlo, Nicole Arnold
  • Patent number: 11098322
    Abstract: This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel aad-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a corn cell. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (or corn grain, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the corn genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 24, 2021
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Yunxing Cory Cui, Jill Bryan, Donald Maum, Greg Gilles, Terry Wright, Jennifer Hamilton, Nicole Arnold, Nathan VanOpdorp, Tina Kaiser, Ning Zhou
  • Publication number: 20210254090
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Application
    Filed: February 15, 2021
    Publication date: August 19, 2021
    Inventors: Terry WRIGHT, Justin LIRA, Donald MERLO, Nicole ARNOLD
  • Publication number: 20210147867
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 20, 2021
    Inventors: Terry WRIGHT, Justin LIRA, Donald MERLO, Nicole ARNOLD
  • Patent number: 10974176
    Abstract: A method of controlling an enhanced primary treatment (EPT) system that includes an EPT settling tank. A sludge drain discharges a sludge including BOD from the EPT settling tank and a clarified effluent discharge recovers decanted fluid from the EPT settling tank. A controller has at least one computer processor. A sludge sensor is communicatively coupled to the controller. The sludge sensor provides a sludge BOD concentration measurement, or a measurement from which the sludge BOD concentration is calculated. A process algorithm controls the sludge valve to control the discharge of the sludge by gravity or by pumping in response to data from the sludge sensor of the sludge BOD concentration.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: April 13, 2021
    Assignee: Clear Cove Systems, Inc
    Inventor: Terry Wright
  • Patent number: 10947555
    Abstract: The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No ?-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: March 16, 2021
    Assignee: Dow AgroSciences LLC
    Inventors: Terry Wright, Justin Lira, Donald Merlo, Nicole Arnold
  • Publication number: 20200385752
    Abstract: The subject invention relates to a novel gene referred to herein as DSM-2. This gene was identified in Streptomyces coelicolor A3. The DSM-2 protein is distantly related to PAT and BAR. The subject invention also provides plant-optimized genes encoding DSM-2 proteins. DSM-2 can be used as a transgenic trait to impart tolerance in plants and plant cells to the herbicides glufosinate and bialaphos. One preferred use of the subject genes areas selectable markers. The use of this gene as a selectable marker in a bacterial system can increase efficiency for plant transformations. Use of DSM-2 as the sole selection marker eliminates the need for an additional medicinal antibiotic marker (such as ampicillin resistance) during cloning. Various other uses are also possible according to the subject invention.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 10, 2020
    Applicant: Dow AgroSciences LLC
    Inventors: Justin M Lira, Terry Wright, Andrew E. Robinson, Sean Russell, Donald J Merlo, Steven Webb, Nicole L Arnold, Kelley E Smith
  • Publication number: 20200385751
    Abstract: The subject invention relates to a novel gene referred to herein as DSM-2. This gene was identified in Streptomyces coelicolor A3. The DSM-2 protein is distantly related to PAT and BAR. The subject invention also provides plant-optimized genes encoding DSM-2 proteins. DSM-2 can be used as a transgenic trait to impart tolerance in plants and plant cells to the herbicides glufosinate and bialaphos. One preferred use of the subject genes are as selectable markers. The use of this gene as a selectable marker in a bacterial system can increase efficiency for plant transformations. Use of DSM-2 as the sole selection marker eliminates the need for an additional medicinal antibiotic marker (such as ampicillin resistance) during cloning. Various other uses are also possible according to the subject invention.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 10, 2020
    Applicant: Dow AgroSciences LLC
    Inventors: Justin M Lira, Terry Wright, Andrew E. Robinson, Sean Russell, Donald J Merlo, Steven Webb, Nicole L Arnold, Kelley E Smith
  • Publication number: 20200295677
    Abstract: A circuit is operative to extract electromagnetic wave energy from the ground via a resonant transformer in which resonance is triggered by electrical charge arcing across a spark gap. A center tap of the primary winding of the transformer is capacitively coupled to an electrode buried in the ground. In-rush current from the ground electrode is converted to a useful form (e.g., one- or three-phase 60 Hz AC) by a power conversion circuit connected to the secondary winding of the resonant transformer. The ground electrode of the capacitor coupling the grounded electrode to the center tap primary winding is the shield of a Faraday cage enclosing the resonant transformer, spark gap, and a high-voltage power supply exciting the spark gap.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 17, 2020
    Inventors: John Dinwiddie, Terry Wright
  • Publication number: 20200024164
    Abstract: A method to accumulate and pre-treat waste water prior to further processing. The method comprises accumulating waste water in a first and second tank and selectively adding further influent waste water to the first or second tank to such that the resultant pH from combining the influent waste water with the accumulated waste water results in a pH close to a target pH.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Applicant: ClearCove Systems Inc.
    Inventors: Terry Wright, Michael Alan Butler
  • Patent number: 10526220
    Abstract: A method for static mixing in a waste water settling tank to increase recovery of entrained solids and solvated materials, the method comprising delivering an influent stream at a substantially constant flow rate to a settling tank; discharging a first portion of said influent stream toward a fluid deflector and a second portion of the influent stream into a fluid containment assembly to distribute the influent into contact with previously introduced waste water to create mixing zones and cause coalescence of the entrained solids.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 7, 2020
    Assignee: Clear Cove Systems, Inc.
    Inventors: Terry Wright, Qausarali Goriawala, James R. Gaffney
  • Patent number: 10526221
    Abstract: A system and method for static mixing in a waste water settling tank to increase recovery of first entrained solids and solvated materials, comprising a settling tank having a recirculation ring and a hopper bottom defining a sludge hopper having a flat bottom portion, a fluid containment assembly, and a fluid deflector assembly with an optional fluid dispersion assembly. The system further comprises an inlet pipe for introduction of waste water containing second entrained solids and solvated materials into the settling tank and a discharge outlet in proximity to the underside of the fluid deflector assembly with nozzle facing downward. Influent waste water is directed both downward into the fluid containment assembly and upward into the center of the fluid deflector assembly and an optional fluid dispersion assembly to distribute the influent into contact with previously introduced waste water to cause coalescence of the first and second entrained solids.
    Type: Grant
    Filed: February 3, 2018
    Date of Patent: January 7, 2020
    Assignee: ClearCove Systems, Inc.
    Inventors: Terry Wright, Qausarali Goriawala, James R. Gaffney
  • Publication number: 20190322553
    Abstract: A system and method to separate and concentrate nutrients from process waste water comprising the steps of accumulating the process waste water in a settling tank; settling the solids to form a supernatant and settled sludge; filtering the supernatant with a filtration system to form a permeate and a concentrate; dewatering the settled sludge to form thickened solids and a pressate; and, blending the thickened solids and the concentrate to form a slurry.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Inventor: Terry Wright
  • Publication number: 20190241451
    Abstract: A system and method for static mixing in a waste water settling tank to increase recovery of first entrained solids and solvated materials, comprising a settling tank having a recirculation ring and a hopper bottom defining a sludge hopper having a flat bottom portion, a fluid containment assembly, and a fluid deflector assembly with an optional fluid dispersion assembly. The system further comprises an inlet pipe for introduction of waste water containing second entrained solids and solvated materials into the settling tank and a discharge outlet in proximity to the underside of the fluid deflector assembly with nozzle facing downward. Influent waste water is directed both downward into the fluid containment assembly and upward into the center of the fluid deflector assembly and an optional fluid dispersion assembly to distribute the influent into contact with previously introduced waste water to cause coalescence of the first and second entrained solids.
    Type: Application
    Filed: February 3, 2018
    Publication date: August 8, 2019
    Inventors: Terry Wright, Qausarali Goriawala, James R. Gaffney
  • Publication number: 20190241450
    Abstract: A method for static mixing in a waste water settling tank to increase recovery of entrained solids and solvated materials, the method comprising delivering an influent stream at a substantially constant flow rate to a settling tank; discharging a first portion of said influent stream toward a fluid deflector and a second portion of the influent stream into a fluid containment assembly to distribute the influent into contact with previously introduced waste water to create mixing zones and cause coalescence of the entrained solids.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 8, 2019
    Inventors: Terry Wright, Qausarali Goriawala, James R. Gaffney