Patents by Inventor Teruaki Komiya

Teruaki Komiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8399146
    Abstract: A free-standing membrane electrolyte electrode assembly (ESC) comprises an electrolyte, an anode electrode formed at one end face of the electrolyte, and a cathode electrode formed at the other. The electrolyte is a single crystal having a surface along with oxide ions move or a direction in which the ions move or a polycrystal oriented along a surface along which oxide ions move or in a direction in which the ions move. The surface or the direction is parallel to the thickness direction. The thickness of the electrolyte is 50 to 800 ?m and the quotient of the division of the total thickness of the anode electrode and the cathode electrode by the thickness of the electrolyte is 0.1 or less,. The thickness of the ESC is 1 mm or less.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: March 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshikatsu Higuchi, Yuji Saito, Teruaki Komiya, Ushio Harada
  • Publication number: 20100248073
    Abstract: A free-standing membrane electrolyte electrode assembly (ESC) comprises an electrolyte, an anode electrode formed at one end face of the electrolyte, and a cathode electrode formed at the other. The electrolyte is a single crystal having a surface along with oxide ions move or a direction in which the ions move or a polycrystal oriented along a surface along which oxide ions move or in a direction in which the ions move. The surface or the direction is parallel to the thickness direction. The thickness of the electrolyte is 50 to 800 ?m, and the quotient of the division of the total thickness of the anode electrode and the cathode electrode by the thickness of the electrolyte is 0.1 or less. The thickness of the ESC is 1 mm or less.
    Type: Application
    Filed: November 27, 2008
    Publication date: September 30, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yoshikatsu Higuchi, Yuji Saito, Teruaki Komiya, Ushio Harada
  • Patent number: 7781535
    Abstract: An acidic group-containing polymer which has an acidic group such as sulfonic acid group, phosphoric acid group, and phosphonic acid group, and a proton acceptor which has a boiling point at 1 atmosphere higher than 100° C. and which functions as a medium for conducting proton dissociated from the acidic group are retained in pores of a porous member. Preferred examples of the proton acceptor include a salt structure composed of an anion and a cation derived from a basic organic compound, a basic organic compound, and a dissociation-facilitating polymer which facilitates dissociation of proton. Any one of the acidic group-containing polymer and the proton acceptor may be retained first, or both may be retained simultaneously.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: August 24, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Teruaki Komiya, Tadahiro Shiba
  • Patent number: 7306867
    Abstract: A material such as imidazole (nitrogen-containing heterocyclic compound), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole number of imidazole per gram of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorganic liquid such as phosphoric acid and sulfuric acid to prepare a proton conductive solid polymer electrolyte.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: December 11, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Teruaki Komiya
  • Patent number: 7045241
    Abstract: A monomer to produce polybenzimidazole is dissolved in polyphosphoric acid. For example, polysulfated phenylene sulfonic acid (acidic group-possessing polymer) is further dissolved in this solution. In this procedure, the acidic group-possessing polymer and the monomer are adsorbed to one another in accordance with the acid-base interaction. When the monomer is polymerized, for example, by means of dehydration polymerization in this state, then polybenzimidazole is synthesized, and the polybenzimidazole and the acidic group-possessing polymer are compatibilized with each other to produce a compatibilized polymer. When the compatibilized polymer is deposited as a solid, and the solid is separated from polyphosphoric acid, then the compatibilized polymer is obtained. A proton conductive solid polymer electrolyte as a final product is manufactured by forming the compatibilized polymer to have a predetermined shape.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: May 16, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Akita, Teruaki Komiya
  • Publication number: 20050197467
    Abstract: An acidic group-containing polymer which has an acidic group such as sulfonic acid group, phosphoric acid group, and phosphonic acid group, and a proton acceptor which has a boiling point at 1 atmosphere higher than 100° C. and which functions as a medium for conducting proton dissociated from the acidic group are retained in pores of a porous member. Preferred examples of the proton acceptor include a salt structure composed of an anion and a cation derived from a basic organic compound, a basic organic compound, and a dissociation-facilitating polymer which facilitates dissociation of proton. Any one of the acidic group-containing polymer and the proton acceptor may be retained first, or both may be retained simultaneously.
    Type: Application
    Filed: March 3, 2005
    Publication date: September 8, 2005
    Applicant: Honda Motor Co., Ltd.
    Inventors: Teruaki Komiya, Tadahiro Shiba
  • Publication number: 20050106440
    Abstract: An acidic group-containing solid polymer, having an acidic group such as a sulfonic acid group, a phosphoric acid group, and/or a phosphonic acid group, is dissolved in an organic solvent other than methanol. An ionic liquid is added to the solution to prepare a casting liquid. The casting liquid is subjected to casting in a cavity formed by an opening of a frame and a sheet member, each of which is composed of PTFE (fluorine-containing polymer material). Thereafter, the solvent is removed to yeild a proton conductor membrane.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 19, 2005
    Applicant: Honda Motor Co., Ltd.
    Inventor: Teruaki Komiya
  • Patent number: 6703152
    Abstract: The operating condition is set so that a phosphoric acid concentration, at which an amount of reaction product water to lower a concentration of phosphoric acid and an amount of water evaporated from phosphoric acid are equilibrated, can be not less than a reference phosphoric acid concentration to maintain desired performance, when a phosphoric acid fuel cell is operated under a condition where the reaction product water exists as liquid water. Specifically, an equilibrium phosphoric acid concentration-setting system is used to control, if necessary, gas flow rate control systems, gas temperature control systems, and pressure control systems so as to effectively prevent the performance of the phosphoric acid fuel cell and its power generation from being worsened. Accordingly, it is possible to suitably operate the phosphoric acid fuel cell at a low temperature without additional equipments.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: March 9, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Teruaki Komiya, Masaru Iguchi, Masahiro Ise
  • Publication number: 20040018408
    Abstract: For example, polysulfated phenylene sulfonic acid, aniline, and sodium chloride are mixed in water. During this process, the interactive absorption force between polysulfated phenylene sulfonic acid and aniline is decreased by sodium ion produced by the ionization of sodium chloride. In this state, aniline is easily polymerized to produce polyaniline, and polyaniline and polysulfated phenylene sulfonic acid are compatibilized with each other to produce a compatibilized polymer in a form of solid. The compatibilized polymer is separated from the solvent and then dissolved, then being formed to have a predetermined shape. Thus, a proton conductive solid polymer electrolyte is manufactured.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 29, 2004
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Akita, Teruaki Komiya
  • Publication number: 20040013925
    Abstract: A material such as imidazole (nitrogen-containing heterocyclic compound), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole number of imidazole per gram of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorganic liquid such as phosphoric acid and sulfuric acid to prepare a proton conductive solid polymer electrolyte.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 22, 2004
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Teruaki Komiya
  • Publication number: 20040013926
    Abstract: A monomer to produce polybenzimidazole is dissolved in polyphosphoric acid. For example, polysulfated phenylene sulfonic acid (acidic group-possessing polymer) is further dissolved in this solution. In this procedure, the acidic group-possessing polymer and the monomer are adsorbed to one another in accordance with the acid-base interaction. When the monomer is polymerized, for example, by means of dehydration polymerization in this state, then polybenzimidazole is synthesized, and the polybenzimidazole and the acidic group-possessing polymer are compatibilized with each other to produce a compatibilized polymer. When the compatibilized polymer is deposited as a solid, and the solid is separated from polyphosphoric acid, then the compatibilized polymer is obtained. A proton conductive solid polymer electrolyte as a final product is manufactured by forming the compatibilized polymer to have a predetermined shape.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 22, 2004
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Akita, Teruaki Komiya
  • Publication number: 20020012823
    Abstract: The operating condition is set so that a phosphoric acid concentration, at which an amount of reaction product water to lower a concentration of phosphoric acid and an amount of water evaporated from phosphoric acid are equilibrated, can be not less than a reference phosphoric acid concentration to maintain desired performance, when a phosphoric acid fuel cell is operated under a condition where the reaction product water exists as liquid water. Specifically, an equilibrium phosphoric acid concentration-setting system is used to control, if necessary, gas flow rate control systems, gas temperature control systems, and pressure control systems so as to effectively prevent the performance of the phosphoric acid fuel cell and its power generation from being worsened. Accordingly, it is possible to suitably operate the phosphoric acid fuel cell at a low temperature without additional equipments.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 31, 2002
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Teruaki Komiya, Masaru Iguchi, Masahiro Ise