Patents by Inventor Teruo Shibano

Teruo Shibano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6885726
    Abstract: A fluorescent X-ray analysis apparatus includes: an X-ray generation source for radiating a beam of primary X-rays; spectroscopic elements circularly arranged so that their inner surfaces describe a circle centered on an optical axis of the beam of primary X-rays for monochromatizing the beam of primary X-rays and condensing the beam on a surface of an irradiation object; a spectroscopic element position adjuster for adjusting the positions of the spectroscopic elements; secondary X-rays detector for detecting secondary X-rays radiated from the surface of the irradiation object irradiated with the monochromatized beam of primary X-rays; a secondary X-ray detector position adjuster adjusting the position of the secondary X-ray detector; an irradiation object surface position detector detecting the position of the surface of the irradiation object; and a controller adjusting the positions of the spectroscopic elements through the spectroscopic element position adjuster to condense the monochromatized beam of pr
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 26, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasushi Uehara, Teruo Shibano
  • Publication number: 20040109534
    Abstract: A fluorescent X-ray analysis apparatus includes: an X-ray generation source for radiating a primary X-ray; plural spectroscopic elements circularly arranged so that their inner surfaces constitute a circle centering on an optical axis of the primary X-ray and adapted for monochromatizing the primary X-ray and condensing it on a surface of an irradiation object; a spectroscopic element position adjusting means for adjusting the positions of the plural spectroscopic elements; a secondary X-ray detector for detecting a secondary X-ray radiated from the surface of the irradiation object upon irradiation with the monochromatized primary X-ray; a secondary X-ray detector position adjusting means for adjusting the position of the secondary X-ray detector; an irradiation object surface position detecting means for detecting the position of the surface of the irradiation object; and a control means for adjusting the positions of the plural spectroscopic elements by the spectroscopic element position adjusting means so
    Type: Application
    Filed: April 22, 2003
    Publication date: June 10, 2004
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasushi Uehara, Teruo Shibano
  • Patent number: 6420191
    Abstract: A semiconductor device such as DRAM including a capacitor, wherein a lower electrode of the capacitor is a metal electrode, the metal electrode being mainly composed of ruthenium or iridium, and being connected directly to a capacitor dielectric film through no oxide layer of materials of the metal electrode formed on the surface of the metal electrode. The lower electrode made of iridium or ruthenium can easily be processed as compared with the conventional case where platinum is employed to form the electrode and also can not be oxidized when the capacitor dielectric film is formed, thus reduction in the capacitance can be prevented.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: July 16, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takeharu Kuroiwa, Tsuyoshi Horikawa, Tetsuro Makita, Noboru Mikami, Teruo Shibano
  • Publication number: 20010009282
    Abstract: A semiconductor device such as DRAM including a capacitor, wherein a lower electrode of the capacitor is a metal electrode, the metal electrode being mainly composed of ruthenium or iridium, and being connected directly to a capacitor dielectric film through no oxide layer of materials of the metal electrode formed on the surface of the metal electrode. The lower electrode made of iridium or ruthenium can easily be processed as compared with the conventional case where platinum is employed to form the electrode and also can not be oxidized when the capacitor dielectric film is formed, thus reduction in the capacitance can be prevented.
    Type: Application
    Filed: January 25, 2001
    Publication date: July 26, 2001
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takeharu Kuroiwa, Tsuyoshi Horikawa, Tetsuro Makita, Noboru Mikami, Teruo Shibano
  • Patent number: 6239460
    Abstract: A semiconductor device such as DRAM including a capacitor, wherein a lower electrode of the capacitor is a metal electrode, the metal electrode being mainly composed of ruthenium or iridium, and being connected directly to a capacitor dielectric film through no oxide layer of materials of the metal electrode formed on the surface of the metal electrode. The lower electrode made of iridium or ruthenium can easily be processed as compared with the conventional case where platinum is employed to form the electrode and also can not be oxidized when the capacitor dielectric film is formed, thus reduction in the capacitance can be prevented.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: May 29, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takeharu Kuroiwa, Tsuyoshi Horikawa, Tetsuro Makita, Noboru Mikami, Teruo Shibano
  • Patent number: 6165556
    Abstract: There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: December 26, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takaaki Kawahara, Mikio Yamamuka, Tetsuro Makita, Tsuyoshi Horikawa, Akimasa Yuuki, Teruo Shibano
  • Patent number: 6101085
    Abstract: There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: August 8, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takaaki Kawahara, Mikio Yamamuka, Tetsuro Makita, Tsuyoshi Horikawa, Akimasa Yuuki, Teruo Shibano
  • Patent number: 6015989
    Abstract: A semiconductor device includes a semiconductor substrate having a major surface; a first interlayer insulating film formed on the semiconductor substrate and having an opening defined therein so as to open at the major surface of the semiconductor substrate; a connecting member made of Si as a principal component and embedded in the opening; a lower capacitor electrode connected electrically with the major surface of the semiconductor substrate through the connecting member; a capacitor dielectric film formed on the lower capacitor electrode; an upper capacitor electrode formed on the capacitor dielectric film; and a second interlayer insulating film formed on the capacitor upper electrode. The lower capacitor electrode referred to above is made of a principal component selected from the group consisting of ruthenium and iridium and contains oxygen in a quantity of 0.001 to 0.1% by atom and/or at least one impurity element in a quantity of 0.1 to 5% by atom.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: January 18, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tsuyosi Horikawa, Tetsuro Makita, Takeharu Kuroiwa, Noboru Mikami, Teruo Shibano
  • Patent number: 5989635
    Abstract: There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: November 23, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takaaki Kawahara, Mikio Yamamuka, Tetsuro Makita, Tsuyoshi Horikawa, Akimasa Yuuki, Teruo Shibano
  • Patent number: 5882410
    Abstract: There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: March 16, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takaaki Kawahara, Mikio Yamamuka, Tetsuro Makita, Tsuyoshi Horikawa, Akimasa Yuuki, Teruo Shibano
  • Patent number: 5834060
    Abstract: There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: November 10, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takaaki Kawahara, Mikio Yamamuka, Tetsuro Makita, Tsuyoshi Horikawa, Akimasa Yuuki, Teruo Shibano
  • Patent number: 5304775
    Abstract: Fine processing is performed by using gas which contains halogen in such a manner that halogen ions contributing to an etching process and ions of a light element, the mass of which is smaller than that of the halogen ion and which does not react with a semiconductor wafer, are present in a plasma generated due to electron cyclotron resonance. Since energy in the plasma is in inverse proportion to the mass, the disorder motion of the halogen ions having large mass can be restrained. Therefore, the halogen ions can be made perpendicularly incident upon the surface of the semiconductor wafer. Consequently, etching process revealing high anisotropy can be performed.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: April 19, 1994
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Nobuo Fujiwara, Kyusaku Nishioka, Teruo Shibano
  • Patent number: 4982138
    Abstract: A wafer treating device utilizing a plasma generated by a gas discharge caused by electron cyclotron resonance (ECR) includes a wafer treating chamber and a plasma generating chamber, a microwave supply for supplying microwave energy to the plasma generating chamber, and an electromagnetic coil which surrounds the plasma generating chamber to produce a minimum B-field therein. A plasma generated in the plasma generating chamber by electron cyclotron resonance is confined stably therein by the minimum B-field produced by the coil. Thus, the density and stability of the plasma in the plasma generating chamber are enhanced. The plasma in the plasma generating chamber is conveyed to a wafer in the wafer treating chamber along the diverging lines of a magnetic force. Examples of the minimum B-field producing coil include Ioffe bars, a baseball coil and an Yin-yang coil.
    Type: Grant
    Filed: November 29, 1988
    Date of Patent: January 1, 1991
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Nobuo Fujiwara, Kenji Kawai, Moriaki Akazawa, Teruo Shibano, Tomoaki Ishida, Kyusaku Nishioka
  • Patent number: 4915979
    Abstract: A semiconductor wafer treating device utilizing a gas plasma generated by electron cyclotron resonance (ECR) is disclosed whch comprises a wafer treating chamber and a plasma generating chamber communicating with the wafer treating chamber. Microwave energy at a frequency of not more than 2 GHz and not less than 100 MHz is supplied to the plasma generating chamber which is surrounded by a solenoidal coil and produces a magnetic field in the plasma generating chamber and in the wafer treating chamber to produce ECR and transport the plasma generated by ECR to the wafer. Thus, the Larmor radius of the electrons moving in helical paths in electron cyclotron resonance in the plasma generating chamber is optimized to make the plasma spatially uniform. Consequently, the uniformity of the treatment on the wafer is improved.
    Type: Grant
    Filed: December 2, 1988
    Date of Patent: April 10, 1990
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tomoaki Ishida, Nobuo Fujiwara, Kyusaku Nishioka, Moriaki Akazawa, Teruo Shibano, Kenji Kawai
  • Patent number: 4877509
    Abstract: An apparatus for treating semiconductor wafers utilizing a plasma generated by electron cyclotron resonance (ECR) is disclosed in which a microwave is supplied to a plasma generating chamber via a rectangular waveguide, a rectangular-to-circular microwave converter, and a circular polarization converter. The polarization converter may comprise a phase shift plate of a dielectric material or an electrically conductive material disposed in a circular waveguide in the form of a metallic cylinder. The polarization converter transforms a circular TE.sub.11 mode microwave supplied from the rectangular-to-circular microwave converter to a circularly polarized one by rotating the direction of the electric field of the microwave in the TE.sub.11 mode one complete turn in one period of the microwave.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: October 31, 1989
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Ogawa, Nobuo Fujiwara, Kenji Kawai, Teruo Shibano, Hiroshi Morita, Kyusaku Nishioka