Patents by Inventor Terutoshi Kanamori

Terutoshi Kanamori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6912083
    Abstract: An ASE light source offers high outputs even in a wavelength band of 1,490 to 1,525 nm. The ASE light source outputs spontaneous emission light generated from Tm-doped optical fibers. Then, the ASE light source outputs amplified light obtained by using Er-doped optical fibers to amplify the output from the Tm-doped optical fibers and spontaneous emission light generated from the Er-doped optical fibers so that the amplified light and the spontaneous emission light are superimposed on each other.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: June 28, 2005
    Assignee: NTT Electronics Corporation
    Inventors: Yasutake Ohishi, Koichi Nakagawa, Terutoshi Kanamori, Yousuke Hiraki
  • Publication number: 20040184820
    Abstract: An ASE light source offers high outputs even in a wavelength band of 1,490 to 1,525 nm. The ASE light source outputs spontaneous emission light generated from Tm-doped optical fibers. Then, the ASE light source outputs amplified light obtained by using Er-doped optical fibers to amplify the output from the Tm-doped optical fibers and spontaneous emission light generated from the Er-doped optical fibers so that the amplified light and the spontaneous emission light are superimposed on each other.
    Type: Application
    Filed: March 25, 2004
    Publication date: September 23, 2004
    Inventors: Yasutake Ohishi, Koichi Nakagawa, Terutoshi Kanamori, Yousuke Hiraki
  • Patent number: 6417963
    Abstract: A tellurite glass as a glass material of optical fiber and optical waveguide has a composition of 0<Bi2O3≦20 (mole %), 0≦Na2O≦35 (mole %), 0≦ZnO≦35 (mole %), and 55≦TeO2≦90 (mole %). The tellurite glass allows an optical amplifier and a laser device that have broadband and low-noise characteristics. In a splicing structure of non silica-based optical fiber (as a first fiber) and a silica-based optical fiber (as a second fiber), optical axes of the first and second optical fibers are held at different angles &thgr;1 and &thgr;2 (&thgr;1≠&thgr;2) respectively from a vertical axis of a boundary surface between their spliced ends, and a relationship between the angles &thgr;1 and &thgr;2 satisfies Snell's law represented by an equation of sin &thgr;1/sin &thgr;2=n2/n1 (where n1 is a refractive index of the first optical fiber and n2 is a refractive index of the second optical fiber) at the time of splicing the first and second optical fibers.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 9, 2002
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Atsushi Mori, Makoto Yamada, Hirotaka Ono, Terutoshi Kanamori, Toshiyuki Shimada
  • Publication number: 20020080474
    Abstract: A tellurite glass as a glass material of optical fiber and optical waveguide has a composition of 0<Bi2O3 ≦20 (mole %), 0≦Na2O≦35 (mole %), 0≦ZnO≦35 (mole %), and 55≦TeO2≦90 (mole %). The tellurite glass allows an optical amplifier and a laser device that have broadband and low-noise characteristics. In a splicing structure of non silica-based optical fiber (as a first fiber) and a silica-based optical fiber (as a second fiber), optical axes of the first and second optical fibers are held at different angles &thgr;1 and &thgr;2 (&thgr;1≠&thgr;2) respectively from a vertical axis of a boundary surface between their spliced ends, and a relationship between the angles &thgr;1 and &thgr;2 satisfies Snell's law represented by an equation of sin &thgr;1/sin &thgr;2=n2 /n1 (where n1 is a refractive index of the first optical fiber and n2 is a refractive index of the second optical fiber) at the time of splicing the first and second optical fibers.
    Type: Application
    Filed: December 28, 2001
    Publication date: June 27, 2002
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yasutake Ohishi, Atsushi Mori, Makoto Yamada, Hirotaka Ono, Terutoshi Kanamori, Toshiyuki Shimada
  • Patent number: 6356387
    Abstract: A tellurite glass as a glass material of optical fiber and optical waveguide has a composition of 0<Bi2O3≦20 (mole %), 0≦Na2O≦35 (mole %), 0≦ZnO≦35 (mole %), and 55≦TeO2≦90 (mole %). The tellurite glass allows an optical amplifier and a laser device that have broadband and low-noise characteristics. In a splicing structure of non silica-based optical fiber (as a first fiber) and a silica-based optical fiber (as a second fiber), optical axes of the first and second optical fibers are held at different angles &thgr;1 and &thgr;2 (&thgr;1≠&thgr;2) respectively from a vertical axis of a boundary surface between their spliced ends, and a relationship between the angles &thgr;1 and &thgr;2 satisfies Snell's law represented by an equation of sin &thgr;1/sin &thgr;2=n2/n1 (where n1 is a refractive index of the first optical fiber and n2 is a refractive index of the second optical fiber) at the time of splicing the first and second optical fibers.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: March 12, 2002
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Atsushi Mori, Makoto Yamada, Hirotaka Ono, Terutoshi Kanamori, Toshiyuki Shimada
  • Patent number: 6278719
    Abstract: An optical amplification medium doped with Er3+ ions is selected from the group of a fluoride glass, a chalcogenide glass, a telluride glass, a halide crystal, and a lead oxide based glass. The Er3+ ions are excited by light of at least one wavelength in the range of 0.96 &mgr;m to 0.98 &mgr;m. A laser or an optical amplifier includes this optical amplification medium doped with Er3+ ions. Furthermore, an optical amplification method performs an optical amplification using the optical amplifier having the optical amplification medium doped with Er3+ ions. Thus, the laser to be applied in the field of optical communication, the optical amplifier having the characteristics of low noise and high gain, and the optical amplification method can be provided.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: August 21, 2001
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Makoto Yamada, Terutoshi Kanamori, Shoichi Sudo
  • Patent number: 6266181
    Abstract: A tellurite glass as a glass material of optical fiber and optical waveguide has a composition of 0<Bi2O3≦20 (mole %), 0≦Na2O≦35 (mole %), 0≦ZnO≦35 (mole %), and 55≦TeO2≦90 (mole %). The tellurite glass allows an optical amplifier and a laser device that have broadband and low-noise characteristics. In a splicing structure of non silica-based optical fiber (as a first fiber) and a silica-based optical fiber (as a second fiber), optical axes of the first and second optical fibers are held at different angles &thgr;1 and &thgr;2 (&thgr;1≠&thgr;2) respectively from a vertical axis of a boundary surface between their spliced ends, and a relationship between the angles &thgr;1 and &thgr;2 satisfies Snell's law represented by an equation of sin &thgr;1/sin &thgr;2=n2/n1 (where n1 is a refractive index of the first optical fiber and n2 is a refractive index of the second optical fiber) at the time of splicing the first and second optical fibers.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: July 24, 2001
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Atsushi Mori, Makoto Yamada, Hirotaka Ono, Terutoshi Kanamori, Toshiyuki Shimada
  • Patent number: 6236496
    Abstract: An optical amplifier includes an erbium doped fiber of which at least one of a core part and a clad part is doped with erbium, excitation light sources or exciting the optical fiber, optical means for inputting excitation light from the excitation light source and signal light to the Er-doped fiber, and an optical isolator. The erbium doped fiber is a 1.58 &mgr;m band optical fiber having an equivalent fiber length as a product of a fiber length (m) and an erbium doping concentration (ppm by weight), which length provides a signal gain obtained at a wavelength of the excitation light source used for excitation of the erbium doped fiber of more than a predetermined practical reference value.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: May 22, 2001
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Makoto Yamada, Hirotaka Ono, Terutoshi Kanamori, Yasutake Ohishi
  • Patent number: 6205164
    Abstract: An optical amplification medium doped with Er3+ ions is selected from the group of a fluoride glass, a chalcogenide glass, a telluride glass, a halide crystal, and a lead oxide based glass. The Er3+ ions are excited by light of at least one wavelength in the range of 0.96 &mgr;m to 0.98 &mgr;m. A laser or an optical amplifier includes this optical amplification medium doped with Er3+ ions. Furthermore, an optical amplification method performs an optical amplification using the optical amplifier having the optical amplification medium doped with Er3+ ions. Thus, the laser to be applied in the field of optical communication, the optical amplifier having the characteristics of low noise and high gain, and the optical amplification method can be provided.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: March 20, 2001
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Makoto Yamada, Terutoshi Kanamori, Shoichi Sudo
  • Patent number: 5774620
    Abstract: This invention relates to fluoride glass with a specific composition having wide infrared transmission. A fluoride optical fiber using this fluoride glass can give high efficiency with a low loss. The fluoride optical fiber having a second cladding on the outer periphery of a first cladding can adjust the refractive index of the first cladding suitably.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: June 30, 1998
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yoshiki Nishida, Terutoshi Kanamori, Tadashi Sakamoto, Yasutake Ohishi, Shoichi Sudo
  • Patent number: 5668659
    Abstract: An amplifying optical fiber includes a core containing Tm ions as activation ions and a clad containing at least one of Tb ions and Eu ions. Alternatively, the amplifying optical fiber includes a core composed of more than two layers. Tm is contained in more than one of the more than two layers as activation ions and at least one of Tb ions and Eu ions is contained in more than one of the more than two in which Tm is not contained.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: September 16, 1997
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tadashi Sakamoto, Terutoshi Kanamori, Makoto Yamada, Makoto Shimizu, Yasutake Ohishi, Shoichi Sudo
  • Patent number: 5486947
    Abstract: Fluoride glass-based optical fiber for an optical amplifier which contains rare earth metal ions in the core glass has a relative refractive index difference .DELTA.n between the core and the cladding of 1.4% or more. The core glass contains PbF.sub.2 in a proportion of 25 mol % or less based on the total composition of the core glass. The fluoride glass is doped with rare earth metal ions, and part of the fluorine in the glass may be substituted by at least one halogen Pr.sup.3+, Pr.sup.3+ --Yb.sup.3+, Pr.sup.3+ --Nd.sup.3+, or Pr.sup.3+ --Er.sup.3+ can be doped as the rare earth metal ions. Chlorine, bromine or iodine may be used as the halogen.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: January 23, 1996
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Terutoshi Kanamori, Yoshiki Nishida, Atsushi Mori, Shoichi Sudo
  • Patent number: 5351335
    Abstract: Fluoride glass-based optical fiber for an optical amplifier which contains rare earth metal ions in the core glass has a relative refractive index difference .DELTA..sub.n between the core and the cladding of 1.4% or more. The core glass contains PbF.sub.2 in a proportion of 25 mol % or less based on the total composition of the core glass . The fluoride glass is doped with rare earth metal ions, and part of the fluorine in the glass may be substituted by at least one halogen. Pr.sup.3+, Pr.sup.3+ --Yb.sup.3+, Pr.sup.3+ --Nd.sup.3+, or Pr.sup.3+ --Er.sup.3+ can be doped as the rare earth metal ions. Chlorine, bromine or iodine may be used as the halogen.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: September 27, 1994
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yasutake Ohishi, Terutoshi Kanamori, Yoshiki Nishida, Atsushi Mori, Shoichi Sudo
  • Patent number: 5145508
    Abstract: A method for preparing a homogenous fluoride glass containing high purity BaF.sub.2 through the CVD process using a gaseous mixture containing a barium .beta.-diketonate complex service as a first starting material and represented by the following general formula (1) of: ##STR1## where (i) R and R' are each --C(CH.sub.3).sub.3 ; or (ii) R is CH.sub.2 CH.sub.2 CH.sub.3 and R' is --C(CH.sub.3).sub.3 ; or (iii) R and R' are each CF.sub.3 ;a gaseous or vaporizable compound of the metallic element constituting said fluoride glass, the gaseous or vaporizable compound serving as a second starting material; and a fluorine-containing gas serving as fluorinating agent. Further provided is a process for preparing a perform for a fluoride optical fiber which is low in transmission loss, by depositing the fluoride glass over the interior wall of a cylindrical tube or the wall of rod-like glass substrate through the CVD process following by collapsing.
    Type: Grant
    Filed: March 11, 1991
    Date of Patent: September 8, 1992
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kazuo Fujiura, Yasutake Ohishi, Michiya Fujiki, Terutoshi Kanamori, Shiro Takahashi
  • Patent number: 5071460
    Abstract: Provided is a process for preparing a homogeneous fluoride glass containing high purity BaF.sub.2 through the CVD process characterized in that the used gaseous mixture comprising: a barium .beta.-diketonate complex serving as a first starting material and represented by the following general formula (1) of: ##STR1## wherein R is an alkyl group having 1 to 7 carbon atoms, R' is a substituted alkyl group having fluorine atoms substituting hydrogen atoms and represented by C.sub.n F.sub.2n+1 where n is an integer of from 1 to 3;a gaseous or vaporizable compound of the metallic element constituting said fluoride glass, the gaseous or vaporizable compound serving as a second starting material; and a fluorine-containing gas serving as fluorinating agent.
    Type: Grant
    Filed: March 1, 1989
    Date of Patent: December 10, 1991
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kazuo Fujiura, Yasutake Ohishi, Michiya Fujiki, Terutoshi Kanamori, Shiro Takahashi
  • Patent number: 4380588
    Abstract: An infrared ray-transmitting glass composition for optical fibers consisting essentially of 28 mol % to 38 mol % of BaF.sub.2, 2 mol % to 7 mol % of GdF.sub.3 and 58 mol % to 69 mol % of ZrF.sub.4, and optical fibers comprising said glass composition.
    Type: Grant
    Filed: January 18, 1982
    Date of Patent: April 19, 1983
    Assignee: Nippon Telegraph & Telephone Public Corporation
    Inventors: Seiko Mitachi, Shuichi Shibata, Terutoshi Kanamori, Toyotaka Manabe, Mitsuho Yasu
  • Patent number: 4346176
    Abstract: Glass for an optical fiber consists essentially of 10 to 64 mol % of at least one kind of fluoride selected from a first group consisting of CaF.sub.2, SrF.sub.2 and BaF.sub.2 ; 0.5 to 50 mol % of at least one kind of fluoride selected from a second group consisting of YF.sub.3 and fluorides of lanthanide elements; and 30 to 65 mol % of AlF.sub.3.
    Type: Grant
    Filed: January 14, 1981
    Date of Patent: August 24, 1982
    Assignee: Nippon Telegraph & Telephone Public Corp.
    Inventors: Terutoshi Kanamori, Toyotaka Manabe
  • Patent number: 4343638
    Abstract: Glass material for infrared ray-transmitting optical fibers comprises a three-component material made of a 28 mol % to 38 mol % BaF.sub.2 -2 mol % to 7 mol % GdF.sub.3 -58 mol % to 69 mol % ZrF.sub.4 -based composition. The glass material is cast in a metal mold with a hollow section which is preheated to a temperature of at least 100.degree. C. but below the glass deformation temperature and annealing the melt in the metal mold to form a glass rod. The glass rod forming step includes heating the melt in the temperature range of between about 200.degree. C. and less than the glass deformation temperature and cooling the melt. The glass rod is removed from the metal mold and optically polished at the ends and sides and is then drawn into a fiber while applying tension to the tip of the glass rod while the glass rod is being heated. The glass rod is drawn into a glass fiber while maintaining the temperature at the end portion of the glass rod constant.
    Type: Grant
    Filed: January 21, 1981
    Date of Patent: August 10, 1982
    Assignee: Nippon Telegraph & Telephone Public Corporation
    Inventors: Seiko Mitachi, Shuichi Shibata, Terutoshi Kanamori, Toyotaka Manabe, Mitsuho Yasu
  • Patent number: 4308066
    Abstract: Glass for optical fibers is made of material of a binary system containing a fluoride selected from BaF.sub.2, SrF.sub.2 CaF.sub.2 and PbF.sub.2 and another fluoride selected from AlF.sub.3 and ZrF.sub.4.
    Type: Grant
    Filed: September 23, 1980
    Date of Patent: December 29, 1981
    Assignee: Nippon Telegraph & Telephone Public Corporation
    Inventors: Seiko Mitachi, Shuichi Shibata, Terutoshi Kanamori, Toyotaka Manabe, Mitsuho Yasu