Patents by Inventor Teruyoshi Mori

Teruyoshi Mori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9869303
    Abstract: A heat/acoustic wave conversion component having a first end face and a second end face, includes a partition wall that defines a plurality of cells extending from the first end face to the second end face, inside of the cells being filled with working fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the working fluid and energy of acoustic waves resulting from oscillations of the working fluid. Hydraulic diameter HD of the heat/acoustic wave conversion component is 0.4 mm or less, where the hydraulic diameter HD is defined as HD=4×S/C, where S denotes a cross-sectional area of each cell perpendicular to the cell extending direction and C denotes a perimeter of the cross section, and the heat/acoustic wave conversion component has three-point bending strength of 5 MPa or more.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 16, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Shinichi Miwa, Naomi Noda, Yuji Deguchi, Teruyoshi Mori, Kazuhiko Hamatsuka, Hiroyuki Suenobu, Masayuki Hironaga, Kazuhiko Kumazawa
  • Patent number: 9765760
    Abstract: A heat/acoustic wave conversion component includes a plurality of monolithic honeycomb segments each including a partition wall that defines a plurality of cells extending between both end faces, and the plurality of monolithic honeycomb segments each mutually converts heat exchanged between the partition wall and the working fluid in the cells and energy of acoustic waves resulting from oscillations of the working fluid. In the heat/acoustic wave conversion component including the plurality of honeycomb segments each being monolithic configured, hydraulic diameter HD of the cells is 0.4 mm or less, open frontal area of the honeycomb segments is 60% or more and 93% or less, heat conductivity of the honeycomb segments is 5 W/mK or less, and a ratio HD/L of the hydraulic diameter HD to the length L of the honeycomb segment is 0.005 or more and less than 0.02.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: September 19, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Shinichi Miwa, Yuji Deguchi, Teruyoshi Mori, Kazuhiko Hamatsuka, Hiroyuki Suenobu, Masayuki Hironaga, Kazuhiko Kumazawa, Naomi Noda
  • Patent number: 9759201
    Abstract: A heat/acoustic wave conversion component includes a partition wall that defines a plurality of cells, inside of the cells being filled with fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the fluid and energy of acoustic waves resulting from oscillations of the fluid. The plurality of cells have an average of hydraulic diameters HDs that is 0.4 mm or less in a plane perpendicular to the cell extending direction, the heat/acoustic wave conversion component has an open frontal area at each end face of 60% or more and 93% or less, and distribution of hydraulic diameters HDs of the plurality of cells has relative standard deviation that is 2% or more and 30% or less.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: September 12, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Shinichi Miwa, Naomi Noda, Yuji Deguchi, Teruyoshi Mori, Kazuhiko Hamatsuka, Hiroyuki Suenobu, Masayuki Hironaga, Kazuhiko Kumazawa
  • Patent number: 9759157
    Abstract: A heat/acoustic wave conversion unit includes a heat/acoustic wave conversion component and two heat exchangers. Hydraulic diameter HD of the cells in the heat/acoustic wave conversion component is 0.4 mm or less, and a ratio HD/L of HD to the length L of the heat/acoustic wave conversion component is from 0.005 to 0.02. One of the heat exchangers includes a heat-exchanging honeycomb structure and an annular tube that surrounds a circumferential face of the heat-exchanging honeycomb structure. The annular tube includes a structure body that is disposed in the channel to increase a contact area with the heated fluid, an inflow port into which the heated fluid flows, and an outflow port through which the heated fluid flows out. At least one of the heat-exchanging honeycomb structure and the structure body is made of a ceramic material that contains SiC as a main component.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 12, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Shinichi Miwa, Tatsuo Kawaguchi, Naomi Noda, Yuji Deguchi, Teruyoshi Mori, Kazuhiko Hamatsuka, Hiroyuki Suenobu, Masayuki Hironaga, Kazuhiko Kumazawa
  • Publication number: 20160084198
    Abstract: A heat/acoustic wave conversion unit includes a heat/acoustic wave conversion component and two heat exchangers. Hydraulic diameter HD of the cells in the heat/acoustic wave conversion component is 0.4 mm or less, and a ratio HD/L of HD to the length L of the heat/acoustic wave conversion component is from 0.005 to 0.02. One of the heat exchangers includes a heat-exchanging honeycomb structure and an annular tube that surrounds a circumferential face of the heat-exchanging honeycomb structure. The annular tube includes a structure body that is disposed in the channel to increase a contact area with the heated fluid, an inflow port into which the heated fluid flows, and an outflow port through which the heated fluid flows out. At least one of the heat-exchanging honeycomb structure and the structure body is made of a ceramic material that contains SiC as a main component.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 24, 2016
    Inventors: Yukio MIYAIRI, Shinichi MIWA, Tatsuo KAWAGUCHI, Naomi NODA, Yuji DEGUCHI, Teruyoshi MORI, Kazuhiko HAMATSUKA, Hiroyuki SUENOBU, Masayuki HIRONAGA, Kazuhiko KUMAZAWA
  • Publication number: 20160084238
    Abstract: A heat/acoustic wave conversion component includes a plurality of monolithic honeycomb segments each including a partition wall that defines a plurality of cells extending between both end faces, and the plurality of monolithic honeycomb segments each mutually converts heat exchanged between the partition wall and the working fluid in the cells and energy of acoustic waves resulting from oscillations of the working fluid. In the heat/acoustic wave conversion component including the plurality of honeycomb segments each being monolithic configured, hydraulic diameter HD of the cells is 0.4 mm or less, open frontal area of the honeycomb segments is 60% or more and 93% or less, heat conductivity of the honeycomb segments is 5 W/mK or less, and a ratio HD/L of the hydraulic diameter HD to the length L of the honeycomb segment is 0.005 or more and less than 0.02.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 24, 2016
    Inventors: Yukio MIYAIRI, Shinichi MIWA, Yuji DEGUCHI, Teruyoshi MORI, Kazuhiko HAMATSUKA, Hiroyuki SUENOBU, Masayuki HIRONAGA, Kazuhiko KUMAZAWA, Naomi NODA
  • Publication number: 20160084239
    Abstract: A heat/acoustic wave conversion component includes a partition wall that defines a plurality of cells, inside of the cells being filled with fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the fluid and energy of acoustic waves resulting from oscillations of the fluid. The plurality of cells have an average of hydraulic diameters HDs that is 0.4 mm or less in a plane perpendicular to the cell extending direction, the heat/acoustic wave conversion component has an open frontal area at each end face of 60% or more and 93% or less, and distribution of hydraulic diameters HDs of the plurality of cells has relative standard deviation that is 2% or more and 30% or less.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 24, 2016
    Inventors: Yukio MIYAIRI, Shinichi MIWA, Naomi NODA, Yuji DEGUCHI, Teruyoshi MORI, Kazuhiko HAMATSUKA, Hiroyuki SUENOBU, Masayuki HIRONAGA, Kazuhiko KUMAZAWA
  • Publication number: 20160084237
    Abstract: A heat/acoustic wave conversion component having a first end face and a second end face, includes a partition wall that defines a plurality of cells extending from the first end face to the second end face, inside of the cells being filled with working fluid that oscillates to transmit acoustic waves, the heat/acoustic wave conversion component mutually converting heat exchanged between the partition wall and the working fluid and energy of acoustic waves resulting from oscillations of the working fluid. Hydraulic diameter HD of the heat/acoustic wave conversion component is 0.4 mm or less, where the hydraulic diameter HD is defined as HD=4×S/C, where S denotes a cross-sectional area of each cell perpendicular to the cell extending direction and C denotes a perimeter of the cross section, and the heat/acoustic wave conversion component has three-point bending strength of 5 MPa or more.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 24, 2016
    Inventors: Yukio MIYAIRI, Shinichi MIWA, Naomi NODA, Yuji DEGUCHI, Teruyoshi MORI, Kazuhiko HAMATSUKA, Hiroyuki SUENOBU, Masayuki HIRONAGA, Kazuhiko KUMAZAWA
  • Patent number: 8371835
    Abstract: There is provided a mold for extrusion forming of ceramic articles which is excellent in wear resistance and can remarkably decrease forming defects in the vicinity of outer peripheries thereof. The mold for the extrusion forming of the ceramic articles includes a die 1 having a plurality of back holes 9, and slits 8; a back pressing plate 12 and a back spacer 13 to adjust the amount of the kneaded clay to be supplied; and a pressing plate 11 and a spacer 10 to regulate the shape and size of the formed ceramic article. At least a portion of the supply end 22 of the die 1 which overlaps with the back pressing plate 12 is flattened, and a surface roughness (Ra) thereof is in a range of 0.05 ?m to 10 ?m.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: February 12, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takao Saito, Teruyoshi Mori, Takehide Shimoda
  • Publication number: 20090186116
    Abstract: There is provided a mold for extrusion forming of ceramic articles which is excellent in wear resistance and can remarkably decrease forming defects in the vicinity of outer peripheries thereof. The mold for the extrusion forming of the ceramic articles includes a die 1 having a plurality of back holes 9, and slits 8; a back pressing plate 12 and a back spacer 13 to adjust the amount of the kneaded clay to be supplied; and a pressing plate 11 and a spacer 10 to regulate the shape and size of the formed ceramic article. At least a portion of the supply end 22 of the die 1 which overlaps with the back pressing plate 12 is flattened, and a surface roughness (Ra) thereof is in a range of 0.05 ?m to 10 ?m.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 23, 2009
    Applicant: NGK Insulators, Ltd.
    Inventors: Takao SAITO, Teruyoshi MORI, Takehide SHIMODA
  • Publication number: 20060088621
    Abstract: A die for extrusion-forming of ceramic formed bodies having a part coming in contact with extruded ceramic clay with a surface roughness (Ra) of 0.1 ?m or more is disclosed. The die has excellent wear resistance and can remarkably reduce a defective body ratio.
    Type: Application
    Filed: October 6, 2005
    Publication date: April 27, 2006
    Applicant: NGK INSULATORS, LTD.
    Inventors: Susumu Matsuoka, Kenichi Ito, Teruyoshi Mori, Masayuki Shichi, Takao Saito