Patents by Inventor Tetsu Takaishi

Tetsu Takaishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10000118
    Abstract: A vehicle clutch control device is provided for switching from a two-wheel drive traveling to a four-wheel drive traveling. The vehicle clutch control device includes a dog clutch that separates a rear wheel drive from a front wheel drive by releasing the dog clutch, an electronically controlled coupling that distributes a driving force of a transverse engine to left and right rear wheels in accordance with a clutch connection capacity, and a four-wheel drive control unit. The four-wheel drive control unit switches the drive mode to one of a disconnect two-wheel drive mode in which the dog clutch and the electronically controlled coupling are released, a connect four-wheel drive mode in which the dog clutch and the electronically controlled coupling are engaged, and a stand-by two-wheel drive mode in which the dog clutch is engaged while the electronically controlled coupling is released.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: June 19, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9981552
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit is switchable between a two-wheel drive mode and a four-wheel drive mode. The 4WD control unit is programmed to control engagement of the dog clutch so that the dog clutch is engaged after the friction clutch is engaged and the dog clutch is synchronized. During engagement of the dog clutch, the 4WD control unit is programmed to reduce a transmission torque of the friction clutch when the dog clutch engagement standby state is detected.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: May 29, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9845006
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, when there is a request to engage the dog clutch from a disengaged state, the controller, during the engagement control of the friction clutch, first controls the engagement of the friction clutch, monitors the change gradient of the clutch rotational speed difference of the dog clutch and starts engagement of the dog clutch upon determining that the gradient of the clutch rotational speed difference is no longer decreasing.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: December 19, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9821655
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit has as two-wheel drive modes, a disconnected two-wheel drive mode in which the dog clutch and the friction clutch are released, and a standby two-wheel drive mode in which the dog clutch is engaged and the friction clutch is released. The 4WD control unit is programmed to switch to the standby two-wheel drive mode when uphill movement is detected during the disconnected two-wheel drive mode.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: November 21, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9783053
    Abstract: A clutch control device is provided for a 4-wheel drive vehicle. The clutch control device includes a 4WD control unit that controls the engagement and release of a friction clutch and a dog clutch which are arranged separately in the two paths. The 4WD control unit has a synchronization speed control unit, and at a time of transition from a disconnected, two-wheel drive mode, in which the friction clutch and the dog clutch are released, to a connected, four-wheel drive mode, in which the friction clutch and the dog clutch are engaged, the synchronization speed control unit reduces a synchronization speed of the dog clutch more during vehicle deceleration than when the vehicle is not decelerating.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 10, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9758038
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, the four-wheel drive hybrid vehicle includes a disconnected, two-wheel drive mode and a connected, four-wheel drive mode. When a driver's foot is lifted off an accelerator in a low-speed region when the connected, four-wheel drive mode is selected, the 4WD control unit maintains the connected, four-wheel drive mode while the brakes are not depressed, and shifts the mode to the disconnected, two-wheel drive mode when the brakes are depressed.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: September 12, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Publication number: 20170182887
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit is switchable between a two-wheel drive mode and a four-wheel drive mode. The 4WD control unit is programmed to control engagement of the dog clutch so that the dog clutch is engaged after the friction clutch is engaged and the dog clutch is synchronized. During engagement of the dog clutch, the 4WD control unit is programmed to reduce a transmission torque of the friction clutch when the dog clutch engagement standby state is detected.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 29, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Patent number: 9688141
    Abstract: A clutch control device is provided for a four-wheel drive vehicle. The clutch control device is able to suppress the elevation of the temperature of the oil supplied to a friction clutch during two-wheel drive travel when the friction clutch is released. The clutch control device includes a dog clutch and an electronic control coupling. The friction clutch is housed in a coupling case. When the dog clutch and the friction clutch are released, a two-wheel drive mode is selected. The coupling case has a passage opening that is closed to retain lubrication oil in an oil chamber with respect to a clutch chamber that houses the friction clutch. When oil stirring conditions are met thereafter, the passage opening is opened and the lubrication oil is allowed to flow into the clutch chamber from the oil chamber.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: June 27, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsu Takaishi, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Katsuyoshi Ogawa
  • Patent number: 9688142
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the dog clutch and the friction clutch. The controller starts the engagement of the dog clutch, after placing the dog clutch in a rotationally synchronized state by engaging the friction clutch and increasing an output rotation thereof, when there is a request to engage the dog clutch. In this clutch control device, the controller sets the engagement start timing of the friction clutch when a transition is made to the connected, four-wheel drive mode to an earlier timing compared to when a transition is made to the standby two-wheel drive mode, when there is a request to engage the dog clutch while in a state in which the disconnected, two-wheel drive mode is selected.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: June 27, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Publication number: 20170166052
    Abstract: A clutch control device is provided for a 4-wheel drive vehicle. The clutch control device includes a 4WD control unit that controls the engagement and release of a friction clutch and a dog clutch which are arranged separately in the two paths. The 4WD control unit has a synchronization speed control unit, and at a time of transition from a disconnected, two-wheel drive mode, in which the friction clutch and the dog clutch are released, to a connected, four-wheel drive mode, in which the friction clutch and the dog clutch are engaged, the synchronization speed control unit reduces a synchronization speed of the dog clutch more during vehicle deceleration than when the vehicle is not decelerating.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 15, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170166053
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit has as two-wheel drive modes, a disconnected two-wheel drive mode in which the dog clutch and the friction clutch are released, and a standby two-wheel drive mode in which the dog clutch is engaged and the friction clutch is released. The 4WD control unit is programmed to switch to the standby two-wheel drive mode when uphill movement is detected during the disconnected two-wheel drive mode.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 15, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170028843
    Abstract: A vehicle clutch control device is provided for switching from a two-wheel drive traveling to a four-wheel drive traveling. The vehicle clutch control device includes a dog clutch that separates a rear wheel drive from a front wheel drive by releasing the dog clutch, an electronically controlled coupling that distributes a driving force of a transverse engine to left and right rear wheels in accordance with a clutch connection capacity, and a four-wheel drive control unit. The four-wheel drive control unit switches the drive mode to one of a disconnect two-wheel drive mode in which the dog clutch and the electronically controlled coupling are released, a connect four-wheel drive mode in which the dog clutch and the electronically controlled coupling are engaged, and a stand-by two-wheel drive mode in which the dog clutch is engaged while the electronically controlled coupling is released.
    Type: Application
    Filed: March 30, 2015
    Publication date: February 2, 2017
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170008396
    Abstract: A clutch control device is provided for a four-wheel drive vehicle. The clutch control device is able to suppress the elevation of the temperature of the oil supplied to a friction clutch during two-wheel drive travel when the friction clutch is released. The clutch control device includes a dog clutch and an electronic control coupling. The friction clutch is housed in a coupling case. When the dog clutch and the friction clutch are released, a two-wheel drive mode is selected. The coupling case has a passage opening that is closed to retain lubrication oil in an oil chamber with respect to a clutch chamber that houses the friction clutch. When oil stirring conditions are met thereafter, the passage opening is opened and the lubrication oil is allowed to flow into the clutch chamber from the oil chamber.
    Type: Application
    Filed: February 4, 2015
    Publication date: January 12, 2017
    Inventors: Tetsu TAKAISHI, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Katsuyoshi OGAWA
  • Publication number: 20160355089
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the dog clutch and the friction clutch. The controller starts the engagement of the dog clutch, after placing the dog clutch in a rotationally synchronized state by engaging the friction clutch and increasing an output rotation thereof, when there is a request to engage the dog clutch. In this clutch control device, the controller sets the engagement start timing of the friction clutch when a transition is made to the connected, four-wheel drive mode to an earlier timing compared to when a transition is made to the standby two-wheel drive mode, when there is a request to engage the dog clutch while in a state in which the disconnected, two-wheel drive mode is selected.
    Type: Application
    Filed: February 24, 2015
    Publication date: December 8, 2016
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20160355086
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, when there is a request to engage the dog clutch from a disengaged state, the controller, during the engagement control of the friction clutch, first controls the engagement of the friction clutch, monitors the change gradient of the clutch rotational speed difference of the dog clutch and starts engagement of the dog clutch upon determining that the gradient of the clutch rotational speed difference is no longer decreasing.
    Type: Application
    Filed: February 24, 2015
    Publication date: December 8, 2016
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20160347171
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, the four-wheel drive hybrid vehicle includes a disconnected, two-wheel drive mode and a connected, four-wheel drive mode. When a driver's foot is lifted off an accelerator in a low-speed region when the connected, four-wheel drive mode is selected, the 4WD control unit maintains the connected, four-wheel drive mode while the brakes are not depressed, and shifts the mode to the disconnected, two-wheel drive mode when the brakes are depressed.
    Type: Application
    Filed: February 24, 2015
    Publication date: December 1, 2016
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Patent number: 9206889
    Abstract: A drive force distributing device includes first and second rollers rotatable jointly with main a drive wheel system and a subordinate drive wheel system, respectively. Control of the drive force distribution between the main drive wheels and the subordinate drive wheels is performed by adjusting an inter-roller pressing force. A structural body suppresses turning of one of the first and second rollers at a predetermined position. A reference position setting mechanism turns either one of the first and second rollers to turn in one direction, detects a position at which the turn is suppressed by the structural body, and sets a reference position based on the detected position. A turning amount of one of the first and second rollers is detected with respect to the reference position set by the reference position setting mechanism and the control of drive force distributing is performed based on the detected turning amount.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 8, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Tetsu Takaishi, Atsuhiro Mori, Shunichi Mitsuishi, Eigo Sakagami, Katsuyoshi Ogawa
  • Patent number: 9200698
    Abstract: In a roller-type friction transmission unit, outer peripheral surfaces of first and second rollers are pressed in a radial direction into pressing contact with one another, to allow frictional power transmission between the first and second rollers. The first roller is connected to a driveline to main driving wheels of a four wheel drive vehicle. The second roller is connected to a driveline to auxiliary driving wheels of the four wheel drive vehicle. The transmitted torque capacity between the first roller and the second roller is controlled by changing a distance between rotation axes of the first and second rollers. The outer peripheral surfaces of the first and second rollers are shaped to allow the outer peripheral surfaces of the first and second rollers to be in contact with one another at a plurality of spots arranged in an axial direction.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 1, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Tetsu Takaishi
  • Publication number: 20140031167
    Abstract: A drive force distributing device includes first and second rollers rotatable jointly with main a drive wheel system and a subordinate drive wheel system, respectively. Control of the drive force distribution between the main drive wheels and the subordinate drive wheels is performed by adjusting an inter-roller pressing force. A structural body suppresses turning of one of the first and second rollers at a predetermined position. A reference position setting mechanism turns either one of the first and second rollers to turn in one direction, detects a position at which the turn is suppressed by the structural body, and sets a reference position based on the detected position. A turning amount of one of the first and second rollers is detected with respect to the reference position set by the reference position setting mechanism and the control of drive force distributing is performed based on the detected turning amount.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 30, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Tetsu TAKAISHI, Atsuhiro MORI, Shunichi MITSUISHI, Eigo SAKAGAMI, Katsuyoshi OGAWA
  • Publication number: 20140018205
    Abstract: A drive force distributing apparatus includes a first roller that is rotatable with a main drive wheel system and a second roller that is rotatable with a subordinate drive wheel system. Control of the drive force distribution between the main drive wheel system and the subordinate drive wheel system is carried out by turning the second roller by the rotation of a crankshaft to thereby adjust a radial pressing force of the second roller against the first roller. A bearing support includes an exterior wall disposed in a housing, a first through bore formed in the exterior wall for receiving a shaft portion of the first roller, a first interior side wall extending radially outward from the first through bore, a second through bore formed in the exterior wall for receiving a crankshaft, and a second interior side wall extending radially outward from the second through bore.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 16, 2014
    Inventors: Tetsu TAKAISHI, Atsuhiro MORI, Shunichi MITSUISHI, Eigo SAKAGAMI, Katsuyoshi OGAWA