Patents by Inventor Tetsuhiko Takahashi

Tetsuhiko Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10890632
    Abstract: To avoid the complication of an MRI apparatus and avoid the overestimation of a calculated value of SAR without extending a processing time and to perform accurate SAR management. To this end, the MRI apparatus is equipped with a high frequency antenna which has a plurality of channels and resonates at a predetermined frequency, and a measuring instrument which measures the amplitudes of a forward traveling and reflected waves of each high frequency signal supplied to the high frequency antenna. In the MRI apparatus, a reflection matrix S is determined based on the measured amplitudes. Diagonal terms of the determined reflection matrix S are used to calculate Q values for each of the channels. Each non-diagonal term of the reflection matrix S is used to correct the calculated Q value.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 12, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Hideta Habara, Masaharu Ono, Tetsuhiko Takahashi, Hiroyuki Takeuchi
  • Publication number: 20200309874
    Abstract: To avoid the complication of an MRI apparatus and avoid the overestimation of a calculated value of SAR without extending a processing time and to perform accurate SAR management. To this end, the MRI apparatus is equipped with a high frequency antenna which has a plurality of channels and resonates at a predetermined frequency, and a measuring instrument which measures the amplitudes of a forward traveling and reflected waves of each high frequency signal supplied to the high frequency antenna. In the MRI apparatus, a reflection matrix S is determined based on the measured amplitudes. Diagonal terms of the determined reflection matrix S are used to calculate Q values for each of the channels. Each non-diagonal term of the reflection matrix S is used to correct the calculated Q value.
    Type: Application
    Filed: February 14, 2017
    Publication date: October 1, 2020
    Applicant: Hitachi, Ltd.
    Inventors: Hideta HABARA, Masaharu ONO, Tetsuhiko TAKAHASHI, Hiroyuki TAKEUCHI
  • Patent number: 10732245
    Abstract: In a diagnostic imaging device, such as an MRI device, correction processing improves an image to be a high-quality image and an imaging time is shortened. In the diagnostic imaging device, a noise reduction unit 201 reduces a noise in observation data acquired with an observation unit 100 and converted into an image, and the image correction unit 202 corrects the noise reduced data by correction processing that uses visual characteristics of human. The image correction unit 202 separates the noise reduced data into a broad luminance component and a local variation component, and generates a correction level map using the broad luminance component. Correcting the noise reduced data using this correction level map and the local variation component acquires a high-quality image that is competent in the clinical field.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 4, 2020
    Assignee: HITACHI, LTD.
    Inventors: Yoshimi Noguchi, Masahiro Ogino, Takenori Murase, Tetsuhiko Takahashi
  • Publication number: 20190137589
    Abstract: In a diagnostic imaging device, such as an MRI device, correction processing improves an image to be a high-quality image and an imaging time is shortened. In the diagnostic imaging device, a noise reduction unit 201 reduces a noise in observation data acquired with an observation unit 100 and converted into an image, and the image correction unit 202 corrects the noise reduced data by correction processing that uses visual characteristics of human. The image correction unit 202 separates the noise reduced data into a broad luminance component and a local variation component, and generates a correction level map using the broad luminance component. Correcting the noise reduced data using this correction level map and the local variation component acquires a high-quality image that is competent in the clinical field.
    Type: Application
    Filed: April 12, 2017
    Publication date: May 9, 2019
    Inventors: Yoshimi NOGUCHI, Masahiro OGINO, Takenori MURASE, Tetsuhiko TAKAHASHI
  • Patent number: 9851424
    Abstract: There is provided a technique for obtaining temperature information for inside of a living body and accuracy information thereof in short time with low burden imposed on a subject. It is realized with a spectrum calculator configured to perform MRS or MRSI measurement for two kinds of substances showing difference of resonant frequencies and calculating spectra of magnetic resonance signals of the two kinds of substances, a temperature information calculator configured to calculate temperature information for inside of the subject on the basis of peaks of the calculated spectra, a temperature accuracy information calculator configured to calculate temperature accuracy information indicating accuracy of the temperature information on the basis of peaks of the calculated spectra, and a display information generator configured to generate display information to be displayed on a display device on the basis of the temperature information and the temperature accuracy information.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 26, 2017
    Assignee: HITACHI, LTD.
    Inventors: Toru Shirai, Yoshitaka Bito, Yo Taniguchi, Satoshi Hirata, Yoshihisa Soutome, Tetsuhiko Takahashi, Hiroyuki Itagaki
  • Patent number: 9726744
    Abstract: Systems and methods for magnetic resonance imaging, including adjusting spatial distribution of a rotating magnetic field. By minimizing imaging time, the B1 nonuniformity reducing effect of RF shimming is maximized for an imaging section of an arbitrary axis direction and an arbitrary position. B1 distributions are measured for only several sections of one predetermined direction, and a radio frequency magnetic field condition that maximizes the B1 non-uniformity reducing effect for an imaging section of an arbitrary direction and an arbitrary position is calculated from the B1 distribution data.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: August 8, 2017
    Assignee: HITACHI, LTD.
    Inventors: Yukio Kaneko, Yoshihisa Soutome, Yoshitaka Bito, Hiroyuki Takeuchi, Tetsuhiko Takahashi, Hideta Habara, Yosuke Otake
  • Patent number: 9714994
    Abstract: In order to approximate the gradient magnetic field pulse waveform shape with high accuracy and improve the image quality at the time of imaging cross-section change or oblique imaging, an MRI apparatus of the present invention divides the waveform shape of the gradient magnetic field pulse into a plurality of sections, defines an approximation function for each section, and corrects the k-space coordinates at which the echo signal is arranged using the parameter of the approximation function. In addition, an optimal parameter of the approximation function of the waveform shape of the gradient magnetic field pulse is searched for using the measured signal.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 25, 2017
    Assignee: HITACHI, LTD.
    Inventors: Masahiro Takizawa, Tetsuhiko Takahashi, Miyuki Kawamura
  • Patent number: 9638771
    Abstract: A technique is provided to reserve large examination space in the tunnel type MRI apparatus, without increasing production cost nor reducing significantly irradiation efficiency and homogeneity in an irradiation distribution within an imaging region. The present invention provides an RF coil unit in which four partial cylindrical coils are placed with a gap therebetween in the circumferential direction inside a cylindrical RF shield, in such a manner that two pairs of the partial cylindrical coils are opposed to each other, and magnetic fields produced by the individual partial cylindrical coils are combined, thereby producing a circularly polarized wave field or an elliptically polarized wave field.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: May 2, 2017
    Assignee: HITACHI, LTD.
    Inventors: Yoshihisa Soutome, Yoshitaka Bito, Hiroyuki Takeuchi, Tetsuhiko Takahashi, Hisaaki Ochi, Hideta Habara
  • Patent number: 9599685
    Abstract: There is provided a technique for suppressing increase of SAR without sacrificing sensitivity in RF coils used in MRI apparatuses. The present invention provides an antenna device comprising a sheet-shaped conductor and a ribbon-shaped conductor disposed on the subject side with respect to the sheet-shaped conductor with a predetermined distance from the sheet-shaped conductor. The ribbon-shaped conductor has a meandering shape, and is adjusted so as to resonate at transmission and reception frequencies, and it is constituted so that distance to the sheet-shaped conductor becomes smaller at both end part thereof along the static magnetic field direction compared with the distance to the sheet-shaped conductor at the center thereof. Moreover, the ribbon-shaped conductor is constituted so as to have a smaller width, as the distance to the sheet-shaped conductor becomes smaller.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: March 21, 2017
    Assignee: HITACHI, LTD.
    Inventors: Hideta Habara, Yoshitaka Bito, Hisaaki Ochi, Yoshihisa Soutome, Masayoshi Dohata, Tetsuhiko Takahashi, Hiroyuki Takeuchi
  • Patent number: 9274189
    Abstract: There is provided a technique for securing a large examination space in a tunnel type MRI device without inviting increase of manufacturing cost and without significantly reducing irradiation efficiency or uniformity of the irradiation intensity distribution in an imaging region. Between rungs of a partially cylindrical RF coil, which coil corresponds to a cylindrical RF coil of which part is removed, there are disposed half-loops generating magnetic fields, which are synthesized with magnetic fields generated by loops constituted by adjacent rungs of the partially cylindrical RF coil and rings connecting the rungs to generate a circularly polarized or elliptically polarized magnetic field. Further, high-frequency signals of the same reference frequency having a desired amplitude ratio and phase difference are supplied to the partially cylindrical RF coils and half-loops.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: March 1, 2016
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Yoshihisa Soutome, Hideta Habara, Yoshitaka Bito, Hiroyuki Takeuchi, Tetsuhiko Takahashi, Hisaaki Ochi
  • Patent number: 9198599
    Abstract: Image processing techniques which enable various contrast control, by quantitatively handling a degree of phase enhancement in a contrast control as a post-processing of the image reconstruction. A complex operation is performed on each pixel value of a complex image obtained by an MRI, thereby generating an image with desired contrast. Intensity is controlled by increasing or decreasing the argument of the pixel value of each pixel by a constant amount, and the degree of phase enhancement is controlled by multiplying the phase (argument) of each pixel by a constant.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: December 1, 2015
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Yo Taniguchi, Yoshitaka Bito, Tetsuhiko Takahashi, Takenori Murase
  • Patent number: 9182463
    Abstract: There is provided a technique for securing a comfortable examination space in a tunnel type MRI apparatus without increasing the manufacturing cost of the MRI apparatus and sacrificing performance thereof. In an RF coil provided with a hollow-shaped outer conductive element and a strip-shaped conductive element disposed along the outer conductive element in the axial direction, meander lines constituting the strip-shaped conductive element are disposed at uneven distances from the outer conductive element to secure an internal space. In order to obtain uniform sensitivity at the center of the RF coil, the strip-shaped conductive element is constituted with N of connected meander lines, and length of the strip-shaped conductive element is adjusted so that, in the strip-shaped conductive element resonating at resonance frequency of the antenna, nodes are formed in a number of (M+1)×N?1, wherein M is 0 or a natural number of 1 or larger.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: November 10, 2015
    Assignee: Hitachi Medical Corporation
    Inventors: Hideta Habara, Yoshitaka Bito, Hisaaki Ochi, Yoshihisa Soutome, Masayoshi Dohata, Tetsuhiko Takahashi, Hiroyuki Takeuchi
  • Publication number: 20150008925
    Abstract: There is provided a technique for obtaining temperature information for inside of a living body and accuracy information thereof in short time with low burden imposed on a subject. It is realized with a spectrum calculator configured to perform MRS or MRSI measurement for two kinds of substances showing difference of resonant frequencies and calculating spectra of magnetic resonance signals of the two kinds of substances, a temperature information calculator configured to calculate temperature information for inside of the subject on the basis of peaks of the calculated spectra, a temperature accuracy information calculator configured to calculate temperature accuracy information indicating accuracy of the temperature information on the basis of peaks of the calculated spectra, and a display information generator configured to generate display information to be displayed on a display device on the basis of the temperature information and the temperature accuracy information.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 8, 2015
    Inventors: Toru Shirai, Yoshitaka Bito, Yo Taniguchi, Satoshi Hirata, Yoshihisa Soutome, Tetsuhiko Takahashi, Hiroyuki Itagaki
  • Patent number: 8896311
    Abstract: A measuring instrument and a measurement method which measures, using magnetic resonance, images such as a functional image, a morphologic image of an object to be measured eliminate the influences of the moving speed of the object to be measured during moving, thereby obtaining a precise measured image.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 25, 2014
    Assignee: Kyushu University, National University Corporation
    Inventors: Hideo Utsumi, Kazuhiro Ichikawa, Tetsuhiko Takahashi
  • Patent number: 8855392
    Abstract: An image with a desired contrast is obtained while suppressing body motion artifacts caused by both random motion and periodic motion of an object. In order to do so, an imaging sequence using a non-Cartesian sampling method is executed so as to synchronize with a biological signal only at the start time and a repetition time (TR), which is an execution interval between shots within the imaging sequence, is maintained. In addition, a time difference between a delay time and a start time of each shot is calculated, and a shot with a predetermined time difference or more is executed again after the TR time.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 7, 2014
    Assignee: Hitachi Medical Corporation
    Inventors: Masahiro Takizawa, Tetsuhiko Takahashi, Tomohiro Goto, Takayuki Abe
  • Publication number: 20140292334
    Abstract: With minimizing extension of imaging time, the B1 non-uniformity reducing effect of RF shimming is maximized for an imaging section of an arbitrary axis direction and an arbitrary position. B1 distributions are measured for only several sections of one predetermined direction, and a radio frequency magnetic field condition that maximizes the B1 non-uniformity reducing effect for an imaging section of an arbitrary direction and an arbitrary position is calculated from the B1 distribution data.
    Type: Application
    Filed: July 27, 2012
    Publication date: October 2, 2014
    Applicant: Hitachi Medical Corporation
    Inventors: Yukio Kaneko, Yoshihisa Soutome, Yoshitaka Bito, Hiroyuki Takeuchi, Tetsuhiko Takahashi, Hideta Habara, Yosuke Otake
  • Patent number: 8648597
    Abstract: An RF coil is provided with a hollow-shaped outer conductive element and strip-shaped conductive elements disposed along the outer conductive element in the axial direction. The strip-shaped conductive elements are disposed with uneven intervals to secure an internal space at a position where the strip-shaped conductive elements are not disposed. In order to obtain uniform sensitivity at the center section of the RF coil, the strip-shaped conductive elements and the outer conductive element are electrically connected via capacitors of which capacitances are adjusted so that a magnetic field component perpendicular to the center axis should be generated at a desired resonance frequency, and the strip-shaped conductive elements are axisymmetrically disposed with respect to the center axis of the outer conductive element. As a result, a comfortable examination space in a tunnel type MRI apparatus is achieved without increasing the manufacturing cost of the MRI apparatus.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: February 11, 2014
    Assignee: Hitachi Medical Corporation
    Inventors: Hideta Habara, Yoshitaka Bito, Hisaaki Ochi, Yoshihisa Soutome, Masayoshi Dohata, Tetsuhiko Takahashi, Hiroyuki Takeuchi
  • Patent number: 8594766
    Abstract: In the continuous moving table imaging, high-speed imaging such as the echo planar method is implemented without deteriorating image quality, realizing a high-speed table movement, namely, high-speed imaging. In the magnetic resonance imaging apparatus, an imaging control means for controlling a magnetic field generation means, a transfer means, and a signal processing means executes an imaging sequence for applying multiple readout gradient magnetic fields to measure multiple nuclear magnetic resonance signals, after one-time application of an exciting RF pulse, while moving the transfer means. On this occasion, a positional deviation of the readout gradient magnetic fields given to the multiple nuclear magnetic resonance signals, caused by the movement of the transfer means, is calculated in advance as correction data, so that the measured nuclear magnetic resonance signals are corrected by the correction data.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 26, 2013
    Assignee: Hitachi Medical Corporation
    Inventors: Masahiro Takizawa, Tetsuhiko Takahashi
  • Patent number: 8594767
    Abstract: When multiple types of imaging are performed while moving a table on which a subject to be examined is placed, an imaging efficiency is improved and a high-quality image is obtained within a short time. Therefore, within a predetermined time interval such as an identical period of a periodic living body motion, a predetermined number of echo signals from each of the multiple types of imaging sequences are acquired and the table on which the subject to be examined is placed is moved. Along with the movement of the table, data items within the same range in the Ky-direction as to each of the imaging sequences are acquired, the moving speed of the table is controlled in such a manner that the acquired data items become continuous in the x-direction, and images are reconstructed based on the data items obtained respectively from the imaging sequences.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: November 26, 2013
    Assignee: Hitachi Medical Corporation
    Inventors: Masahiro Takizawa, Tetsuhiko Takahashi
  • Publication number: 20130221968
    Abstract: There is provided a technique for suppressing increase of SAR without sacrificing sensitivity in RF coils used in MRI apparatuses. The present invention provides an antenna device comprising a sheet-shaped conductor and a ribbon-shaped conductor disposed on the subject side with respect to the sheet-shaped conductor with a predetermined distance from the sheet-shaped conductor. The ribbon-shaped conductor has a meandering shape, and is adjusted so as to resonate at transmission and reception frequencies, and it is constituted so that distance to the sheet-shaped conductor becomes smaller at both end part thereof along the static magnetic field direction compared with the distance to the sheet-shaped conductor at the center thereof. Moreover, the ribbon-shaped conductor is constituted so as to have a smaller width, as the distance to the sheet-shaped conductor becomes smaller.
    Type: Application
    Filed: October 6, 2011
    Publication date: August 29, 2013
    Inventors: Hideta Habara, Yoshitaka Bito, Hisaaki Ochi, Yoshihisa Soutome, Masayoshi Dohata, Tetsuhiko Takahashi, Hiroyuki Takeuchi