Patents by Inventor Tetsuichi Wazawa

Tetsuichi Wazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7906344
    Abstract: The metal fine particles 33 are sparsely fixed on the surface of the transparent substrate 32, and the acceptor 35 for attaching the specific ligand is immobilized on the transparent substrate 32 or the metal fine particles 33. The prism 36 is closely attached to the lower surface of the transparent substrate 32, and the excitation light enters the transparent substrate 32 through the prism 36. The incident light is totally reflected at the surface of the transparent substrate 32, and the evanescent light generated at the surface and the metal fine particles 33 locally plasmon resonate. As the evanescent light and the metal fine particles locally plasmon resonate, a strong electric field is enclosed in the vicinity of the metal fine particles.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 15, 2011
    Assignee: OMRON Corporation
    Inventors: Tomohiko Matsushita, Shigeru Aoyama, Takeo Nishikawa, Shingo Nagaoka, Tetsuichi Wazawa
  • Patent number: 7501241
    Abstract: A method of mass-producing minute structures such as biochips, protein chips, quantum dots, and quantum chips involves arranging an antigen two-dimensionally on a board and arranging probes two-dimensionally facing the same direction so that the binding sites of the probes may bind to the antigen. An inorganic substance such as Ni is deposited on the board from the upper side of the probes by sputtering or evaporation to form a thin film layer and on the top surface of the flatly formed thin film layer, a supporting layer is formed by separating out the same inorganic substance using electrotyping. Then, by peeling the thin film layer and the supporting layer off of the board together, the mother stamper having cavities for the patterns of biomolecules is obtained.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: March 10, 2009
    Assignee: OMRON Corporation
    Inventors: Tomohiko Matsushita, Shigeru Aoyama, Takeo Nishikawa, Yuko Tsuda, Shigemi Norioka, Tetsuichi Wazawa
  • Patent number: 7342663
    Abstract: At both ends of a waveguide 43 having a plurality of cores 51, light emitting elements 47 and light receiving elements 49 are disposed so as to face end faces of the cores 51. A switch 44 is overlapped over the waveguide 43. In the switch 44, switching windows 52 each can be switched between a state where light propagating through the core 51 is passed and a state where the light is reflected are arranged in the vertical and horizontal directions, and the switching windows 52 are arranged along the top faces of the cores 51. A test board 45 having a plurality of channels 60 in each of which a metallic thin film 61 is formed is disposed over the switch 44, and receptors 62 are fixed on the metallic thin film 61 in the channels 60. A specimen containing a specific ligand is passed in each of the channels 60.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 11, 2008
    Assignee: OMRON Corporation
    Inventors: Tomohiko Matsushita, Takeo Nishikawa, Yuko Tsuda, Shigemi Norioka, Tetsuichi Wazawa, Shigeru Aoyama
  • Publication number: 20080037022
    Abstract: In a surface plasmon resonance sensor including a chip with a substrate 102 and a metal layer 103, a prism 104, an optical system 105 serving as a light source, and a light detector 106, the metal layer 103 is configured by a flat part 109 formed into a thin film, and convex parts formed from metal particles 110 and the like arranged spaced apart from each other. When light enters the metal layer 103 of such configuration, resonance angle arising from the flat part 109 and the convex parts are respectively obtained. The change in index of refraction of a medium contacted by the metal layer is detected from such resonance angle.
    Type: Application
    Filed: February 10, 2005
    Publication date: February 14, 2008
    Inventors: Takeo Nishikawa, Shigeru Aoyama, Tomohiko Matsushita, Shigemi Norioka, Tetsuichi Wazawa
  • Publication number: 20070273884
    Abstract: The metal fine particles 33 are sparsely fixed on the surface of the transparent substrate 32, and the acceptor 35 for attaching the specific ligand is immobilized on the transparent substrate 32 or the metal fine particles 33. The prism 36 is closely attached to the lower surface of the transparent substrate 32, and the excitation light enters the transparent substrate 32 through the prism 36. The incident light is totally reflected at the surface of the transparent substrate 32, and the evanescent light generated at the surface and the metal fine particles 33 locally plasmon resonate. As the evanescent light and the metal fine particles locally plasmon resonate, a strong electric field is enclosed in the vicinity of the metal fine particles.
    Type: Application
    Filed: March 30, 2005
    Publication date: November 29, 2007
    Inventors: Tomohiko Matsushita, Shigeru Aoyama, Takeo Nishikawa, Shingo Nagaoka, Tetsuichi Wazawa
  • Publication number: 20070224639
    Abstract: A substrate for immobilizing biomolecules comprises a chip substrate, a hydrophilic monolayer, and a lipid bilayer, and a biochip comprising the substrate for immobilizing biomolecules on which biomolecules are immobilized. The substrate for immobilizing biomolecules includes a transparent chip substrate, a metal layer provided on the chip substrate, a monolayer provided on the metal layer, and a lipid bilayer provided on the monolayer. The metal layer is composed of fine particles of Au, the monolayer is composed of self-assembled molecules represented by X—(CH2)n—OH (where X is a thiol group), and the lipid bilayer is composed of self-assembled phospholipids. The monolayer and the lipid bilayer are relatively flexibly bound together via hydrogen bonds. In the biochip, a receptor is immobilized on the lipid bilayer via a biorecognition molecule.
    Type: Application
    Filed: June 28, 2006
    Publication date: September 27, 2007
    Applicants: OMRON Corporation, Osaka University
    Inventors: Tomohiko Matsushita, Takeo Nishikawa, Hideyuki Yamashita, Masaaki Ikeda, Shigeru Aoyama, Tetsuichi Wazawa, Hiroshi Sezaki
  • Publication number: 20070211254
    Abstract: At both ends of a waveguide 43 having a plurality of cores 51, light emitting elements 47 and light receiving elements 49 are disposed so as to face end faces of the cores 51. A switch 44 is overlapped over the waveguide 43. In the switch 44, switching windows 52 each can be switched between a state where light propagating through the core 51 is passed and a state where the light is reflected are arranged in the vertical and horizontal directions, and the switching windows 52 are arranged along the top faces of the cores 51. A test board 45 having a plurality of channels 60 in each of which a metallic thin film 61 is formed is disposed over the switch 44, and receptors 62 are fixed on the metallic thin film 61 in the channels 60. A specimen containing a specific ligand is passed in each of the channels 60.
    Type: Application
    Filed: December 8, 2004
    Publication date: September 13, 2007
    Applicant: Omron Corporation
    Inventors: Tomohiko Matsushita, Takeo Nishikawa, Yuko Tsuda, Shigemi Norioka, Tetsuichi Wazawa, Shigeru Aoyama
  • Publication number: 20050046758
    Abstract: A method of mass-producing minute structures such as biochips, protein chips, quantum dots, and quantum chips involves arranging an antigen two-dimensionally on a board and arranging probes two-dimensionally facing the same direction so that the binding sites of the probes may bind to the antigen. An inorganic substance such as Ni is deposited on the board from the upper side of the probes by sputtering or evaporation to form a thin film layer and on the top surface of the flatly formed thin film layer, a supporting layer is formed by separating out the same inorganic substance using electrotyping. Then, by peeling the thin film layer and the supporting layer off of the board together, the mother stamper having cavities for the patterns of biomolecules is obtained.
    Type: Application
    Filed: July 29, 2004
    Publication date: March 3, 2005
    Inventors: Tomohiko Matsushita, Shigeru Aoyama, Takeo Nishikawa, Yuko Tsuda, Shigemi Norioka, Tetsuichi Wazawa