Patents by Inventor Tetsutaro Hayashi

Tetsutaro Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10971720
    Abstract: A positive electrode active material includes secondary particles. The secondary particles include a plurality of primary particles. The primary particles include a lithium-containing composite metal oxide. Inside the secondary particles, an electron conducting oxide is disposed at at least a part of a grain boundary between the primary particles. The electron conducting oxide has a perovskite structure.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: April 6, 2021
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Ryuta Sugiura, Satoshi Kanada, Tetsutaro Hayashi, Taira Aida
  • Publication number: 20210020922
    Abstract: A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuji YAMAMOTO, Momoko PROCTER, Yoshinari MAKIMURA, Tetsutaro HAYASHI, Willy Shun Kai Bong
  • Publication number: 20210020901
    Abstract: Provided is a nonaqueous electrolyte secondary battery with a positive electrode active material that contains an excess of Li and has a layered structure, the nonaqueous electrolyte secondary battery having a high output and enabling prevention of gelation of the positive electrode active material layer-forming paste during production. The herein disclosed nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material layer. The positive electrode active material layer contains a lithium composite oxide having a layered structure as a positive electrode active material. The compositional ratio of the lithium atom to the metal atom other than a lithium atom contained in the lithium composite oxide is greater than 1. The lithium composite oxide is in the form of porous particles.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20210020925
    Abstract: The present disclosure can bring excellent output characteristics to a nonaqueous electrolyte secondary battery that uses a cathode active material containing tungsten while desired durability is secured. The battery of the present disclosure includes a cathode, an anode, and a nonaqueous electrolyte. The cathode includes a cathode active material layer that contains a granular cathode active material. The cathode active material includes a core part that contains a lithium-transition metal composite oxide of a layered structure; a tungsten-concentrated layer that is formed over a surface of the core part and has a higher tungsten concentration than in the core part; and a lithium-tungsten compound particle that adheres to at least part of a surface of the tungsten-concentrated layer and contains tungsten and lithium. In the battery of the present disclosure, the tungsten-concentrated layer has an amorphous structure. This can bring excellent output characteristics while desired durability is secured.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Applicants: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20210020923
    Abstract: A non-aqueous electrolyte secondary battery is obtained using a lithium composite oxide having a layered structure in a positive electrode active substance. An increase in resistance following repeated charging and discharging is suppressed. The battery includes a positive electrode provided with a positive electrode active substance layer, a negative electrode and a non-aqueous electrolyte. The positive electrode active substance layer contains a porous particle lithium composite oxide having a layered structure. The average void ratio of the porous particle is not less than 12% but not more than 50%, and it contains two or more voids having diameters that are at least 8% of its particle diameter. The surface of the porous particle is provided with a coating of lithium tungstate. The coverage ratio of the surface of the porous particle by the lithium tungstate is not less than 10% but not more than 65%.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuji YAMAMOTO, Momoko PROCTER, Yoshinari MAKIMURA, Tetsutaro HAYASHI, Willy Shun Kai Bong
  • Publication number: 20210020924
    Abstract: A nonaqueous electrolyte secondary battery uses, as a positive electrode active material, a lithium composite oxide having a layered structure and coated with lithium tungstate, and has a low resistance. The nonaqueous electrolyte secondary battery includes positive and negative electrodes and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material layer containing a lithium composite oxide having a layered structure as a positive electrode active material. The lithium composite oxide is in the form of porous particles, each having at least two voids each having a percentage of a void area with respect to the area occupied by each of the particles in its cross-sectional view of at least 1%. Each porous particle has a void connecting the particle interior to the surface and having an opening with a diameter of at least 100 nm. Each porous particle has a lithium tungstate coating on its surface.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji YAMAMOTO, Momoko PROCTER, Yoshinari MAKIMURA, Tetsutaro HAYASHI, Willy Shun Kai BONG
  • Publication number: 20210020900
    Abstract: A non-aqueous electrolyte secondary battery that has a low initial resistance and an increase in resistance after charging and discharging is suppressed. The secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer, which contains a lithium composite oxide having a layered structure. The lithium composite oxide is a porous particle. A surface of the porous particle includes a layer having a rock salt type structure. A thickness of the layer is not less than 5 nm and not more than 80 nm. A void ratio of the porous particle is not less than 15% and not more than 48%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle includes a coating of lithium tungstate.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji YAMAMOTO, Momoko PROCTER, Yoshinari MAKIMURA, Tetsutaro HAYASHI, Willy Shun Kai Bong
  • Patent number: 10840509
    Abstract: A positive electrode active material for lithium secondary batteries disclosed herein comprises a lithium transition metal oxide of a layered structure, represented by formula Li1+?NixCoyMnzCa?M?O2 (where ?0.05???0.2, x+y+z+?+??1, 0.3?x??0.7, 0.1?y?0.4, 0.1?z?0.4, 0.0002???0.0025, 0.0002??+??0.02, and in a case where ?>0, M is absent or represents one, two or more elements selected from the group consisting of Na, Mg, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). The tap density of the positive electrode active material ranges from 1.8 to 2.5 g/cm3.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 17, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Hideyuki Saka, Shuhei Oda, Tetsutaro Hayashi, Hiroyuki Toya
  • Publication number: 20200048693
    Abstract: A kit for amplifying a nucleic acid, using RNA as a template, which can realize elimination of the risk of non-specific amplification caused by DNA mixed from reagents and/or working environment, an increase in the detection sensitivity of trace RNA, and a reduction in amplification bias. The kit includes a degrading enzyme specific to DNA in an RNA-DNA hybrid that is a double strand-specific DNA degrading enzyme or a non-specific DNA degrading enzyme, and an RNase H minus reverse transcriptase. If the degrading enzyme specific to DNA in an RNA-DNA hybrid is a non-specific DNA degrading enzyme, then the kit further comprises a single-stranded DNA-binding protein.
    Type: Application
    Filed: September 12, 2019
    Publication date: February 13, 2020
    Applicant: RIKEN
    Inventors: Tetsutaro HAYASHI, Yohei SASAGAWA, Itoshi NIKAIDO
  • Publication number: 20190372090
    Abstract: Provided is a positive electrode material that allows reducing battery resistance. The positive electrode material disclosed herein has particles of a positive electrode active material, each having a void communicating between the surface and at least the interior; and an electronic conductor present on the surface of the particles of the positive electrode active material. The positive electrode active material has a layered rock salt structure, and has a composition represented by Formula (I) below. The electronic conductor has a composition represented by Formula (II) below, Li1+uNixMnyCozMtO2??(I) La1?pMapCo1?qMbqO3????(II) wherein the symbols in the formulas are as defined in the specification.
    Type: Application
    Filed: May 13, 2019
    Publication date: December 5, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Ryuta SUGIURA, Taira AIDA, Tetsutaro HAYASHI, Satoshi KANADA
  • Patent number: 10457982
    Abstract: It is an object of the present invention to provide a method for amplifying a nucleic acid, using RNA as a template, which can realize elimination of the risk of non-specific amplification caused by DNA mixed from reagents and/or working environment, an increase in the detection sensitivity of trace RNA, and a reduction in amplification bias. According to the present invention, there is provided a method for amplifying a nucleic acid, which comprises a step of incubating a mixture comprising template RNA, a primer, a degrading enzyme specific to DNA in RNA-DNA hybrid, an RNase H minus reverse transcriptase, and a substrate.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 29, 2019
    Assignee: RIKEN
    Inventors: Tetsutaro Hayashi, Yohei Sasagawa, Itoshi Nikaido
  • Publication number: 20190165372
    Abstract: A positive electrode material for a lithium secondary battery, including: a positive electrode active material represented by Li1+?NixCoyMnzMItO2 and having a layered rock salt-type crystal structure; an electron-conducting oxide represented by LapAe1?pCoqMII1?qO3??; and a Li ion-conducting oxide including Li element, 0 element, and at least one element selected from W, P, Nb, and Si.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 30, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Ryuta SUGIURA, Taira AIDA, Tetsutaro HAYASHI, Satoshi KANADA
  • Publication number: 20190088943
    Abstract: A positive electrode plate for a nonaqueous electrolyte secondary battery, which enables an increased output of a battery and leads to decreased deterioration in battery performance when used as a positive electrode plate for the battery, is provided. The positive electrode plate for a nonaqueous electrolyte secondary battery is provided, which has a positive electrode composed of a positive active material comprising a lithium metal composite oxide, and on the surface of the positive electrode, an amorphous coating layer formed of a compound containing niobium and lithium, wherein the compound is a lithium ion conductor. Accordingly, lithium ion conductivity in the electrode can be improved, and deterioration of the lithium ion conductivity and dielectricity in air can be suppressed.
    Type: Application
    Filed: February 27, 2017
    Publication date: March 21, 2019
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mikako KATO, Tetsutaro HAYASHI, Koji KURIHARA
  • Publication number: 20180316003
    Abstract: A positive electrode for a lithium ion secondary battery includes a positive electrode composite material layer. The positive electrode composite material layer includes composite particles and electron conductive particles. The composite particles include positive electrode active material particles and a coating film. The coating film is formed on the surface of the positive electrode active material particles. The coating film contains a first electron conductive oxide. The electron conductive particles are dispersed in the positive electrode composite material layer. The electron conductive particles contain a second electron conductive oxide. Each of the first electron conductive oxide and the second electron conductive oxide has a perovskite structure.
    Type: Application
    Filed: April 17, 2018
    Publication date: November 1, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Daisuke HORIKAWA, Ryuta SUGIURA, Satoshi KANADA, Tetsutaro HAYASHI, Taira AIDA
  • Publication number: 20180316000
    Abstract: A positive electrode active material includes secondary particles. The secondary particles include a plurality of primary particles. The primary particles include a lithium-containing composite metal oxide. Inside the secondary particles, an electron conducting oxide is disposed at at least a part of a grain boundary between the primary particles. The electron conducting oxide has a perovskite structure.
    Type: Application
    Filed: April 16, 2018
    Publication date: November 1, 2018
    Applicants: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Ryuta Sugiura, Satoshi Kanada, Tetsutaro Hayashi, Taira Aida
  • Patent number: 10090514
    Abstract: Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1?x?yCoxMyO2 (wherein 0.10?x?0.35, 0?y?0.35, 0.97?z?1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 2, 2018
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Rei Kokado, Kensaku Mori, Masanori Takagi, Tetsutaro Hayashi
  • Patent number: 9991505
    Abstract: Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1-x-yCoxMyO2 (wherein 0.10?x?0.35, 0?y?0.35, 0.97?z?1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: June 5, 2018
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Rei Kokado, Kensaku Mori, Masanori Takagi, Tetsutaro Hayashi
  • Publication number: 20170275685
    Abstract: It is an object of the present invention to provide a method for amplifying a nucleic acid, using RNA as a template, which can realize elimination of the risk of non-specific amplification caused by DNA mixed from reagents and/or working environment, an increase in the detection sensitivity of trace RNA, and a reduction in amplification bias. According to the present invention, there is provided a method for amplifying a nucleic acid, which comprises a step of incubating a mixture comprising template RNA, a primer, a degrading enzyme specific to DNA in RNA-DNA hybrid, an RNase H minus reverse transcriptase, and a substrate.
    Type: Application
    Filed: September 30, 2015
    Publication date: September 28, 2017
    Applicant: RIKEN
    Inventors: Tetsutaro HAYASHI, Yohei SASAGAWA, Itoshi NIKAIDO
  • Publication number: 20170098821
    Abstract: Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1-x-yCoxMyO2 (wherein 0.10?x?0.35, 0?y?0.35, 0.97?z?1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Inventors: Rei Kokado, Kensaku Mori, Masanori Takagi, Tetsutaro Hayashi
  • Publication number: 20160006030
    Abstract: A positive electrode active material for lithium secondary batteries disclosed herein comprises a lithium transition metal oxide of a layered structure, represented by formula Li1+?NixCoyMnzCa?M?O2 (where ?0.05???0.2, x+y+z+?+??1, 0.3?x??0.7, 0.1?y?0.4, 0.1?z?0.4, 0.0002???0.0025, 0.0002??+??0.02, and in a case where ?>0, M is absent or represents one, two or more elements selected from the group consisting of Na, Mg, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). The tap density of the positive electrode active material ranges from 1.8 to 2.5 g/cm3.
    Type: Application
    Filed: January 22, 2014
    Publication date: January 7, 2016
    Applicants: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki SAKA, Shuhei ODA, Tetsutaro HAYASHI, Hiroyuki TOYA