Patents by Inventor Tetsuya Chikada

Tetsuya Chikada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190360422
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A control part of the engine performs a calculation according to the control logic corresponding to an engine operating state in response to a measurement of a measurement part, controls a fuel injection part, a variable valve operating mechanism, an ignition part and a supercharger so that a G/F becomes leaner than a stoichiometric air fuel ratio and a A/F becomes equal to or richer than the stoichiometric air fuel ratio, while causing the supercharger to boost, and controls the ignition part so that unburnt mixture gas combusts by self-ignition after the ignition. The method includes determining a supercharging pressure P, and determining control logic defining a close timing IVC of an intake valve. When determining the control logic, the close timing IVC (deg.aBDC) is determined so that the supercharging pressure P (kPa) satisfies the following expression: P?8.0×10?11IVC6?1.0×10?8IVC5+3.0×10?7IVC4?4.0×10?6IVC3+0.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360425
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. The controller controls the intake phase-variable mechanism to form a gas-fuel ratio (G/F) lean environment in which burnt gas remains inside a cylinder and an air-fuel ratio is near a stoichiometric air-fuel ratio, and controls the spark plug to spark-ignite the mixture gas to combust in a partial compression-ignition combustion. The controller controls the intake phase-variable mechanism to retard, as an engine speed increases at a constant engine load, an intake valve close timing on a retarding side of BDC of intake stroke and an intake valve open timing on an advancing side of TDC of exhaust stroke, and controls the intake phase-variable mechanism so that a change rate in the intake valve open timing according to the engine speed becomes larger in a high engine speed range.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360368
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A controller outputs a signal to a injector and a variable valve operating mechanism so that a gas-fuel ratio (G/F) becomes leaner than a stoichiometric air fuel ratio, and an air-fuel ratio (A/F) becomes equal to or richer than the stoichiometric air fuel ratio, and to an ignition plug so that unburnt mixture gas combusts by self-ignition after the ignition plug ignites mixture gas inside a combustion chamber. The method includes steps of determining a geometric compression ratio and determining the control logic defining an intake valve close timing IVC. IVC (deg.aBDC) is determined so that the following expression is satisfied: if the geometric compression ratio ? is 10??<17, 0.4234?2?22.926?+207.84+C?IVC??0.4234?2+22.926??167.84+C where C is a correction term according to an engine speed NE (rpm), C=3.3×10?10NE3?1.0×10?6NE2+7.0×10?4NE.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Masatoshi Hidaka, Toshiaki Takahashi, Tatsuhiro Tokunaga
  • Publication number: 20190360449
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to retard the intake valve open timing on an advancing side of TDC of an exhaust stroke, as the engine load increases within the first range, and advance the intake valve close timing on a retarding side of TDC of intake stroke, as the engine load increases within the second range.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga