Patents by Inventor Tetsuya Haruna

Tetsuya Haruna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060262387
    Abstract: Provided is an optical amplifier fiber in which both increasing output light power and sufficiently inhibiting the occurrence of nonlinear optical phenomenon can be compatibly achieved. In addition, an optical amplifier and light source equipment, in which such optical amplifier fiber is used, are provided. The optical amplifier fiber comprises (1) a core region doped with an aluminum element in the range of 1 wt % to 10 wt %, an erbium element in the range of 1000 wt. ppm to 5000 wt. ppm, and a fluorine element, the core region having an outer diameter in the range of 10 ?m to 30 ?m, and (2) a cladding region surrounding the core region and having a refractive index that is lower than the core region, wherein the relative refractive index difference of the core region relative to the cladding region is 0.3% or more and 2.0% or less.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 23, 2006
    Inventors: Tetsuya Haruna, Toshiki Taru, Masashi Onishi, Motoki Kakui, Shinji Ishikawa
  • Patent number: 7130513
    Abstract: A method produces a glass body that contains a reduced amount of OH groups in the metallic-oxide-containing glass layer and that has a reduced amount of transmission loss due to OH groups when the glass body is transformed into an optical fiber. The production method produces an optical glass body. An optical fiber contains the optical glass body in at least one part of its region for guiding a lightwave. The production method includes the following steps: (a) introducing into a glass pipe a gas containing an organometallic compound and a glass-forming material; (b) decomposing the organometallic compound into an organic constituent and a metallic constituent; (c) heating and oxidizing the metallic constituent so that produced glass particles containing a metallic oxide are deposited on the inner surface of the glass pipe to form a glass-particle-deposited layer; and (d) consolidating the deposited layer to form a metallic-oxide-containing glass layer.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: October 31, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Haruna, Shinji Ishikawa, Toshiki Taru, Tetsutarou Katayama, Nobuyuki Taira
  • Publication number: 20060215254
    Abstract: The present invention relates to an optical gain waveguide having excellent gain flatness in C-band, and excellent tolerance against variations of a pumping light wavelength as well, and a method of controlling the same. The optical gain waveguide includes an optical waveguide region which is doped with Er element which can be pumped by irradiating pumping light with a wavelength of 976 nm or less, or a wavelength of 981 nm or more. A population inversion of Er is optimized so that a gain variation in the C-band becomes minimum, by the irradiation of the pumping light. At this time, a relative gain variation of the optical gain waveguide, which is defined by a peak gain value and a minimum gain value in the wavelength region of 1,530 nm to 1,560 nm becomes smaller than 11.5%. In addition, in the optical gain waveguide, a width of wavelength range producing the relative gain variation smaller than 11% is 36 nm or more.
    Type: Application
    Filed: March 2, 2006
    Publication date: September 28, 2006
    Inventors: Takahiro Murata, Motoki Kakui, Tetsuya Haruna
  • Patent number: 7016582
    Abstract: Based on an intermediate 20A in which a cladding portion 22 is formed on the outer periphery of a core portion 21, a pair of holes 23 and 24 are provided parallel to the z axis on both sides of the core portion 21 within the cladding portion 22, and an intermediate 20 is thereby fabricated. In this intermediate 20, a width Ry in the y-axis direction is made smaller than a width Rx in the x-axis direction. Moreover, a cylindrical stress applying part 33 is inserted into a hole 23 of the intermediate 20, and a cylindrical stress applying part 34 is inserted into a hole 24 thereof. Thus, a preform 40 is formed. These materials are drawn and integrated together, and a polarization maintaining optical fiber is thereby manufactured.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: March 21, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Iwao Okazaki, Ichiro Tsuchiya, Shinji Ishikawa, Motohide Yoshida, Tetsuya Haruna, Kazuyuki Soma
  • Publication number: 20050284182
    Abstract: There is disclosed a method of manufacturing an optical fiber whose core is made of multi-component glass without fluctuation in its outer diameter and occurrence of sudden breakage thereof, with a technique of unifying a core rod and a cladding tube at the time of drawing, and yet drawing them; and the optical fiber having a multi-component glass core are disclosed.
    Type: Application
    Filed: April 11, 2005
    Publication date: December 29, 2005
    Inventors: Toshiki Taru, Shinji Ishikawa, Tetsuya Haruna, Motoki Kakui, Takahiro Murata
  • Publication number: 20050276564
    Abstract: The present invention relates to an optical waveguide and the like having a structure for generating a wide band of ASE. The optical waveguide comprises a material mainly comprised of glass or glass ceramics, and is at least partly doped with a rare earth element. In a spectrum of ASE generated in the optical waveguide when supplied with pumping light having a single wavelength in particular, a 15-dB band or 10-dB band includes a range from 1.45 ?m to 1.65 ?m or a range from 1.5 ?m to 1.7 ?m. Alternatively, a 3-dB band includes S, C, and L bands.
    Type: Application
    Filed: May 2, 2005
    Publication date: December 15, 2005
    Inventors: Motoki Kakui, Shinji Ishikawa, Tetsuya Haruna, Takahiro Murata
  • Publication number: 20050276555
    Abstract: A method produces a glass body that contains a reduced amount of OH groups in the metallic-oxide-containing glass layer and that has a reduced amount of transmission loss due to OH groups when the glass body is transformed into an optical fiber. The production method produces an optical glass body. An optical fiber contains the optical glass body in at least one part of its region for guiding a lightwave. The production method includes the following steps: (a) introducing into a glass pipe a gas containing an organometallic compound and a glass-forming material; (b) decomposing the organometallic compound into an organic constituent and a metallic constituent; (c) heating and oxidizing the metallic constituent so that produced glass particles containing a metallic oxide are deposited on the inner surface of the glass pipe to form a glass-particle-deposited layer; and (d) consolidating the deposited layer to form a metallic-oxide-containing glass layer.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 15, 2005
    Inventors: Tetsuya Haruna, Shinji Ishikawa, Toshiki Taru, Tetsutarou Katayama, Nobuyuki Taira
  • Publication number: 20050122574
    Abstract: The present invention relates to an optical amplification fiber and others capable of effectively reducing nonlinear interaction between signal channels even in transmission of multiplexed signal light containing multiple signal channels arranged in high density and also effectively reducing bending loss. An optical amplification module has an optical isolator, a WDM coupler, an Er-doped optical fiber (EDF) as an optical amplification fiber, a WDM coupler, and an optical isolator, which are arranged in order on a signal light propagation path from an input connector to an output connector, and further has a pumping light source connected to the WDM coupler and a pumping light source connected to the other WDM coupler. The EDF, at the wavelength of 1607 nm, has a mode field diameter (MFD) of 10 ?m or more to the fundamental mode and a MAC number (=MFD/cutoff wavelength) of 6.8 or less to the fundamental mode.
    Type: Application
    Filed: September 3, 2004
    Publication date: June 9, 2005
    Inventors: Motoki Kakui, Tetsuya Haruna, Shinji Ishikawa
  • Publication number: 20040233514
    Abstract: The present invention relates to a fluorescent glass capable of being doped with a high concentration of rare earth ions and suitable for optical communication application, and an optical component incorporating it. The fluorescent glass comprises Al2O3 of 15 to 50 mol %; SiO2 of 0 to 80 mol %; an oxide of 5 to 85 mol % in total comprising at least one of B2O3, Ga2O3, Y2O3, Ta2O5, Sb2O3, Nd2O5, La2O3, and Yb2O3; and a rare earth ion. Concentration quenching is more suppressed in this fluorescent glass than in conventional fluorescent glasses, and it is thus feasible for the fluorescent glass to be doped with a high concentration of rare earth ions and to highly efficiently generate fluorescence of wavelengths in the signal wavelength bands generally used in optical communication.
    Type: Application
    Filed: February 18, 2004
    Publication date: November 25, 2004
    Inventors: Masahiro Takagi, Tetsuya Haruna, Motoki Kakui, Masayuki Shigematsu, Takahiro Murata
  • Publication number: 20040114895
    Abstract: Based on an intermediate 20A in which a cladding portion 22 is formed on the outer periphery of a core portion 21, a pair of holes 23 and 24 are provided parallel to the z axis on both sides of the core portion 21 within the cladding portion 22, and an intermediate 20 is thereby fabricated. In this intermediate 20, a width Ry in the y-axis direction is made smaller than a width Rx in the x-axis direction. Moreover, a cylindrical stress applying part 33 is inserted into a hole 23 of the intermediate 20, and a cylindrical stress applying part 34 is inserted into a hole 24 thereof. Thus, a preform 40 is formed. These materials are drawn and integrated together, and a polarization maintaining optical fiber is thereby manufactured.
    Type: Application
    Filed: September 30, 2003
    Publication date: June 17, 2004
    Inventors: Iwao Okazaki, Ichiro Tsuchiya, Shinji Ishikawa, Motohide Yoshida, Tetsuya Haruna, Kazuyuki Soma
  • Publication number: 20030150241
    Abstract: The invention provides a production method for a PMF. Two or more bores at regular intervals are formed in a glass rod including a core and a clad so that the bores may be located on a concentric circle around a center axis of the glass rod. A stress applying member is inserted into the bore. The glass rod and the stress applying member may be heated before or after inserting. The glass rod with the stress applying is drawn without exposure to the atmosphere after heating in order to form an optical fiber.
    Type: Application
    Filed: January 21, 2003
    Publication date: August 14, 2003
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Haruna, Hideyuki Iziri, Motohide Yoshida, Takahiro Seki