Patents by Inventor Tetsuya Mishima

Tetsuya Mishima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9287683
    Abstract: A semiconductor interband laser that includes a first cladding layer formed using a first high-doped semiconductor material having a first refractive index/permittivity and a second cladding layer formed using a second high-doped semiconductor material having a second refractive index/permittivity. The laser also includes a waveguide core having a waveguide core refractive index/permittivity, the waveguide core is positioned between the first and the second cladding layers. The waveguide core including an active region adapted to generate light based on interband transitions. The light being generated defines the lasing wavelength or the lasing frequency. The first refractive index and the second refractive index are lower than the waveguide core refractive index. The first cladding layer and/or the second cladding layers can also be formed using a metal.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 15, 2016
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Rui Q. Yang, Tetsuya Mishima, Michael B. Santos, Zhaobing Tian, Matthew B. Johnson, Robert T. Hinkey
  • Publication number: 20160013619
    Abstract: A semiconductor interband laser that includes a first cladding layer formed using a first high-doped semiconductor material having a first refractive index/permittivity and a second cladding layer formed using a second high-doped semiconductor material having a second refractive index/permittivity. The laser also includes a waveguide core having a waveguide core refractive index/permittivity, the waveguide core is positioned between the first and the second cladding layers. The waveguide core including an active region adapted to generate light based on interband transitions. The light being generated defines the lasing wavelength or the lasing frequency. The first refractive index and the second refractive index are lower than the waveguide core refractive index. The first cladding layer and/or the second cladding layers can also be formed using a metal.
    Type: Application
    Filed: December 16, 2014
    Publication date: January 14, 2016
    Inventors: Rui Q. Yang, Tetsuya Mishima, Michael B. Santos, Zhaobing Tian, Matthew B. Johnson, Robert T. Hinkey
  • Patent number: 8929417
    Abstract: A semiconductor interband laser that includes a first cladding layer formed using a first high-doped semiconductor material having a first refractive index/permittivity and a second cladding layer formed using a second high-doped semiconductor material having a second refractive index/permittivity. The laser also includes a waveguide core having a waveguide core refractive index/permittivity, the waveguide core is positioned between the first and the second cladding layers. The waveguide core including an active region adapted to generate light based on interband transitions. The light being generated defines the lasing wavelength or the lasing frequency. The first refractive index and the second refractive index are lower than the waveguide core refractive index. The first cladding layer and/or the second cladding layers can also be formed using a metal.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: January 6, 2015
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Rui Q. Yang, Tetsuya Mishima, Michael B. Santos, Zhaobing Tian, Matthew B. Johnson, Robert T. Hinkey
  • Publication number: 20120044964
    Abstract: A semiconductor interband laser that includes a first cladding layer formed using a first high-doped semiconductor material having a first refractive index/permittivity and a second cladding layer formed using a second high-doped semiconductor material having a second refractive index/permittivity. The laser also includes a waveguide core having a waveguide core refractive index/permittivity, the waveguide core is positioned between the first and the second cladding layers. The waveguide core including an active region adapted to generate light based on interband transitions. The light being generated defines the lasing wavelength or the lasing frequency. The first refractive index and the second refractive index are lower than the waveguide core refractive index. The first cladding layer and/or the second cladding layers can also be formed using a metal.
    Type: Application
    Filed: December 21, 2010
    Publication date: February 23, 2012
    Inventors: Rui Q. Yang, Tetsuya Mishima, Michael B. Santos, Zhaobing Tian, Matthew B. Johnson, Robert T. Hinkey
  • Patent number: 7923098
    Abstract: A low-defect-density crystalline structure comprising a first crystalline material, a layer of second crystalline material epitaxially grown on the first crystalline material, and a layer of third crystalline material epitaxially grown on the second layer such that the second layer is positioned between the first crystalline material and the third crystalline material. The second and third crystalline materials cooperate to form a desirable relationship. The crystalline structures of the second crystalline material and third crystalline material have a higher crystalline compatibility than the first crystalline material and third crystalline material. The layer of second crystalline material is sufficiently thick to form the desirable relationship with the third crystalline material but sufficiently thin for the layer of second crystalline material to be strained. The layer of third crystalline material is grown to a thickness beyond a thickness had the third layer been grown on an unstrained second layer.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: April 12, 2011
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Tetsuya Mishima, Madhavie Edirisooriya, Michael B. Santos
  • Publication number: 20090169843
    Abstract: A low-defect-density crystalline structure comprising a first crystalline material, a layer of second crystalline material epitaxially grown on the first crystalline material, and a layer of third crystalline material epitaxially grown on the second layer such that the second layer is positioned between the first crystalline material and the third crystalline material. The second and third crystalline materials cooperate to form a desirable relationship. The crystalline structures of the second crystalline material and third crystalline material have a higher crystalline compatibility than the first crystalline material and third crystalline material. The layer of second crystalline material is sufficiently thick to form the desirable relationship with the third crystalline material but sufficiently thin for the layer of second crystalline material to be strained. The layer of third crystalline material is grown to a thickness beyond a thickness had the third layer been grown on an unstrained second layer.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 2, 2009
    Inventors: Tetsuya Mishima, Madhavie Edirisooriya, Michael B. Santos