Patents by Inventor Tetsuya Mitsumoto

Tetsuya Mitsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11831007
    Abstract: A Si-based negative electrode active material that is capable of improving cycle characteristics, reducing or eliminating a plateau region in the discharge profile, and further improving high-rate characteristics. The Si-based negative electrode active material contains Si and a compound containing Si and a semimetal/metal element M, wherein the content of Si in the negative electrode active material is more than 50 wt %; the content of oxygen atoms (O) is less than 30 wt %; the content of the semimetal/metal element M is more than 10 wt % and less than 50 wt %, wherein in an X-ray diffraction pattern as measured by a powder X-ray diffraction (XRD) device using Cu-K?1 rays, the full width at half maximum of the peak of the (111) plane of Si is 0.25° or more; and wherein the peak intensity of the peak of the (111) plane of Si is less than 20,000 cps; and the true density is 2.5 g/cm3 or more.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: November 28, 2023
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventor: Tetsuya Mitsumoto
  • Patent number: 11799079
    Abstract: Provided is a 5 V class spinel type lithium nickel manganese-containing composite oxide having an operating potential of 4.5 V or more with respect to a metal Li reference potential, wherein the composite oxide is able to improve cycle characteristics while suppressing the amount of gas generated under high temperature environments and, moreover, to improve output characteristics while suppressing a shoulder on discharge at around 4.1 V in a charge and discharge curve. The spinel type lithium nickel manganese-containing composite oxide is represented by a general formula [Li(LiaNiyMnxTibMgzM?)O4-?] (where 0<a, 0<b, 0.30?y<0.60, 0<z, 0??, x=2?a?b?y?z??<1.7, 3?b/a?8, 0.11<b+z+?, 0<z/b<1, 0???0.2, and M represents one or two or more elements selected from the group consisting of Fe, Co, Ba, Cr, W, Mo, Y, Zr, Nb, P, and Ce).
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: October 24, 2023
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventor: Tetsuya Mitsumoto
  • Publication number: 20230074796
    Abstract: An active material is provided for use in a solid-state battery. The active material exhibits at least one peak in the range of 0.145 to 0.185 nm and at least one peak in the range of 0.280 to 0.310 nm in a radial distribution function obtained through measurement of an X-ray absorption fine structure thereof. In the particle size distribution, by volume, of the active material obtained through a particle size distribution measurement by laser diffraction scattering method, the ratio of the absolute value of the difference between the mode diameter of the active material and the D10 of the active material (referred to as the “mode diameter” and the “D10” respectively) to the mode diameter in percentage terms, (|mode diameter - D10 / mode diameter) x 100, satisfies 0% < (( | mode diameter - D10| / mode diameter) x 100) ? 58.0%.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Jun OMURA, Daisuke WASHIDA, Tetsuya MITSUMOTO, Hitohiko IDE, Yasuo KOMODA, Yasuhiro SHIBATA, Yasunori TABIRA, Tomoyuki MAEDA
  • Publication number: 20220149354
    Abstract: An active material is provided for use in a solid-state battery. The active material exhibits at least one peak in the range of 0.145 to 0.185 nm and at least one peak in the range of 0.280 to 0.310 nm in a radial distribution function obtained through measurement of an X-ray absorption fine structure thereof. In the particle size distribution, by volume, of the active material obtained through a particle size distribution measurement by laser diffraction scattering method, the ratio of the absolute value of the difference between the mode diameter of the active material and the D10 of the active material (referred to as the “mode diameter” and the “D10” respectively) to the mode diameter in percentage terms, (|mode diameter?D10|/mode diameter)×100, satisfies 0%<((|mode diameter?D10|/mode diameter)×100)?58.0%.
    Type: Application
    Filed: February 26, 2020
    Publication date: May 12, 2022
    Inventors: Jun OMURA, Daisuke WASHIDA, Tetsuya MITSUMOTO, Hitohiko IDE, Yasuo KOMODA, Yasuhiro SHIBATA, Yasunori TABIRA, Tomoyuki MAEDA
  • Publication number: 20220131137
    Abstract: An active material comprising silicon and a compound represented by MxSiy, where x and y satisfy 0.1?x/y?7.0, and M represents one or more metalloid elements other than Si and metal elements, wherein the content of Si elements is more than 50 wt %, the content of M is less than 38 wt %, and the content of oxygen elements is less than 30 wt %; D50 and Dmax are less than 4.0 ?m and less than 25 ?m, respectively; and in an X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuK?1 rays, the full width at half maximum of a peak A appearing at 2?=28.42°±1.25° is 0.25° or more, and when the peak intensity of a peak B belonging to the compound is defined as IB and the peak intensity of the peak A is defined as IA, the ratio (IA/IB) of the IA to the IB is less than 1.
    Type: Application
    Filed: February 13, 2020
    Publication date: April 28, 2022
    Inventors: Tetsuya Mitsumoto, Hitohiko Ide, Takuya Kai
  • Publication number: 20210234158
    Abstract: Disclosed is an active material that can reduce an interface resistance with a sulfide solid electrolyte and improve the battery performance. The active material exhibits at least one peak in the range of from 0.145 nm to 0.185 nm and at least one peak in the range of from 0.28 nm to 0.31 nm in a radial distribution function obtained through measurement of an X-ray absorption fine structure of the active material. The active material is for use in a solid-state battery. The active material preferably has a core particle, and a coating layer located on the surface of the core particle.
    Type: Application
    Filed: September 27, 2019
    Publication date: July 29, 2021
    Inventors: Daisuke WASHIDA, Hitohiko IDE, Tetsuya MITSUMOTO, Jun OMURA, Yasuo KOMODA, Yasuhiro SHIBATA, Yasunori TABIRA, Tomoyuki MAEDA
  • Publication number: 20210159496
    Abstract: A positive electrode active substance for an all solid-state lithium secondary battery, wherein the surface of the present core particles composed of a lithium metal composite oxide having a layered structure containing Li, M element, where M includes at least one element or a combination of two or more elements selected from the group consisting of Ni, Co, Mn, and Al, and O is coated with an amorphous compound containing Li, A, where A represents one element or a combination of two or more elements selected from the group consisting of Ti, Zr, Ta, Nb, Zn, W, and Al, and O, and wherein the D50 is 0.5 to 11 ?m, the value of (|mode diameter?D50|/mode diameter)×100 is 0 to 25%, the value of (|mode diameter?D10|/mode diameter)×100) is 20 to 58%, and the value of average primary particle diameter/D50 is 0.01 to 0.99.
    Type: Application
    Filed: August 27, 2018
    Publication date: May 27, 2021
    Inventors: Tetsuya Mitsumoto, Daisuke Washida
  • Publication number: 20210143421
    Abstract: Provided is a 5 V class spinel type lithium nickel manganese-containing composite oxide having an operating potential of 4.5 V or more with respect to a metal Li reference potential, wherein the composite oxide is able to improve cycle characteristics while suppressing the amount of gas generated under high temperature environments and, moreover, to improve output characteristics while suppressing a shoulder on discharge at around 4.1 V in a charge and discharge curve. The spinel type lithium nickel manganese-containing composite oxide is represented by a general formula [Li(LiaNiyMnxTibMgzM?)O4-?] (where 0<a, 0<b, 0.30?y<0.60, 0<z, 0??, x=2?a?b?y?z??<1.7, 3?b/a?8, 0.11<b+z+?, 0<z/b<1, 0???0.2, and M represents one or two or more elements selected from the group consisting of Fe, Co, Ba, Cr, W, Mo, Y, Zr, Nb, P, and Ce).
    Type: Application
    Filed: February 28, 2018
    Publication date: May 13, 2021
    Inventor: Tetsuya Mitsumoto
  • Patent number: 10763499
    Abstract: Provided is a novel positive electrode active material capable of suppressing resistance and improving rate characteristics and cycle characteristics while enhancing lithium ionic conductivity, wherein the surface of particles composed of a spinel-type composite oxide containing Li, Mn, O, and two or more other elements is coated with a lithium ion conductive oxide such as LiNbO3. Proposed is a positive electrode active material for an all-solid-type lithium secondary battery, wherein the surface of present core particles composed of a spinel-type composite oxide containing Li, Mn, O, and two or more other elements is coated with an amorphous compound containing Li, A (A represents one or more elements selected from the group consisting of Ti, Zr, Ta, Nb, and Al), and O; and the molar ratio (Li/A) of Li relative to the A element in the surface, as obtained by XPS, is 1.0 to 3.5.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 1, 2020
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Toshikazu Matsuyama, Tetsuya Mitsumoto, Hitohiko Ide, Daisuke Washida
  • Publication number: 20200243847
    Abstract: A Si-based negative electrode active material that is capable of improving cycle characteristics, reducing or eliminating a plateau region in the discharge profile, and further improving high-rate characteristics. The Si-based negative electrode active material contains Si and a compound containing Si and a semimetal/metal element M, wherein the content of Si in the negative electrode active material is more than 50 wt %; the content of oxygen atoms (O) is less than 30 wt %; the content of the semimetal/metal element M is more than 10 wt % and less than 50 wt %, wherein in an X-ray diffraction pattern as measured by a powder X-ray diffraction (XRD) device using Cu-K?1 rays, the full width at half maximum of the peak of the (111) plane of Si is 0.25° or more; and wherein the peak intensity of the peak of the (111) plane of Si is less than 20,000 cps; and the true density is 2.5 g/cm3 or more.
    Type: Application
    Filed: August 10, 2018
    Publication date: July 30, 2020
    Inventor: Tetsuya Mitsumoto
  • Publication number: 20200194788
    Abstract: A positive electrode active substance for an all solid-state lithium secondary battery having an operating potential of 4.5 V or more at a metal Li reference potential, wherein the surface of the present core particles composed of a spinel-type lithium manganese-containing composite oxide containing at least Li, Mn, O, and two or more elements other than these is coated with an amorphous compound containing Li, A, where A represents one element or a combination of two or more elements selected from the group consisting of Ti, Zr, Ta, Nb, Zn, W, and Al, and O. Primary particles of the present core particles are composed of a polycrystal. The D50 is 0.5-9 ?m, the value of (|mode diameter?D50|/mode diameter)×100 is 0 to 25%, the value of (|mode diameter?D10|/mode diameter)×100 is 20-58%, and the value of the average primary particle diameter/D50 is 0.20-0.99.
    Type: Application
    Filed: August 27, 2018
    Publication date: June 18, 2020
    Inventors: Tetsuya Mitsumoto, Daisuke Washida
  • Patent number: 10468677
    Abstract: Provided is a spinel-type lithium-manganese-containing complex oxide that is related to a 5 V-class spinel, and with which output characteristics and charge-discharge cycle ability can be enhanced while suppressing gas generation. Proposed is a spinel-type lithium-manganese-containing complex oxide comprising at least Li, Mn, O, and two or more other elements, and having an operating potential of 4.5 V or more with respect to a metal Li reference potential, wherein: D50 is 0.5 to 9 ?m; a value of (|mode diameter?D50|/mode diameter)×100 is 0 to 25%; a value of (|mode diameter?D10|/mode diameter)×100 is 20 to 58%; a ratio of average primary particle diameter/D50, which is calculated from an average primary particle diameter calculated from a SEM image and the D50, is 0.20 to 0.99; and a primary particle is a polycrystal.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 5, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kyohei Yamaguchi, Tetsuya Mitsumoto, Hideaki Matsushima, Shinya Kagei
  • Patent number: 10446842
    Abstract: Provided is a new 5 V class spinel-type lithium manganese-containing composite oxide which enables the expansion of a high potential capacity region and the suppression of gas generation. The 5 V class spinel-type lithium manganese-containing composite oxide has an operating potential of 4.5 V or more at a metal Li reference potential, and contains Li, Mn, O and two or more other elements. The spinel-type lithium manganese-containing composite oxide is characterized in that, in an electronic diffraction image from a transmission electron microscope (TEM), a diffraction spot observed in the Fd-3m structure as well as a diffraction spot not observed in the Fd-3m structure are confirmed.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 15, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuya Mitsumoto, Kyohei Yamaguchi, Toshikazu Matsuyama, Hideaki Matsushima, Shinya Kagei
  • Publication number: 20190260018
    Abstract: Provided is a novel positive electrode active material capable of suppressing resistance and improving rate characteristics and cycle characteristics while enhancing lithium ionic conductivity, wherein the surface of particles composed of a spinel-type composite oxide containing Li, Mn, O, and two or more other elements is coated with a lithium ion conductive oxide such as LiNbO3. Proposed is a positive electrode active material for an all-solid-type lithium secondary battery, wherein the surface of present core particles composed of a spinel-type composite oxide containing Li, Mn, O, and two or more other elements is coated with an amorphous compound containing Li, A (A represents one or more elements selected from the group consisting of Ti, Zr, Ta, Nb, and Al), and O; and the molar ratio (Li/A) of Li relative to the A element in the surface, as obtained by XPS, is 1.0 to 3.5.
    Type: Application
    Filed: July 12, 2017
    Publication date: August 22, 2019
    Inventors: Toshikazu Matsuyama, Tetsuya Mitsumoto, Hitohiko Ide, Daisuke Washida
  • Patent number: 10312508
    Abstract: A positive electrode active material comprising a lithium metal composite oxide having a layered crystal structure provides a novel lithium metal composite oxide powder which can suppress the reaction with an electrolytic solution and raise the charge-discharge cycle ability of a battery, and can improve the output characteristics of a battery. A lithium metal composite oxide powder comprises a particle having a surface portion where one or a combination of two or more (“surface element A”) of the group consisting of Al, Ti and Zr is present, on the surface of a particle comprising a lithium metal composite oxide having a layered crystal structure, wherein the amount of surface LiOH is smaller than 0.10% by weight, and the amount of surface Li2CO3 is smaller than 0.25% by weight; in an X-ray diffraction pattern, the ratio of an integral intensity of the (003) plane of the lithium metal composite oxide to that of the (104) plane thereof is higher than 1.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: June 4, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuya Mitsumoto, Daisuke Washida, Toshikazu Matsuyama, Daisuke Inoue, Hideaki Matsushima, Yoshimi Hata, Hitohiko Ide, Shinya Kagei
  • Patent number: 10276867
    Abstract: Provided is a new 5 V-class spinel-type lithium-manganese-containing composite oxide capable of achieving both the expansion of a high potential capacity region and the suppression of gas generation. Proposed is the spinel-type lithium-manganese-containing composite oxide comprising Li, Mn, O and two or more other elements, and having an operating potential of 4.5 V or more at a metal Li reference potential, wherein a peak is present in a range of 14.0 to 16.5° at 2?, in an X-ray diffraction pattern measured by a powder X-ray diffractometer (XRD) using CuK?1 ray.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: April 30, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuya Mitsumoto, Kyohei Yamaguchi, Toshikazu Matsuyama, Hideaki Matsushima, Shinya Kagei
  • Patent number: 10263244
    Abstract: Provided is a lithium metal composite oxide having a layered structure, which is particularly excellent as a positive electrode active material for batteries that are mounted on electric vehicles or hybrid vehicles. Proposed is a lithium metal composite oxide having a layered structure, which is represented by general formula Li1+x(Mn?Co?Ni?)1?xO2 (0.00?X?0.07, 0.10???0.40, 0.10???0.40, and 0.30???0.75) and has a specific surface area of more than 2.0 m2/g but 5.0 m2/g or less and has an average particle size of the primary particles/crystallite size ratio of 5.7 to 18.5.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: April 16, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuya Mitsumoto, Yasuhiro Ochi, Tomohiro Sakata, Hitohiko Ide, Yoshimi Hata, Shinya Kagei
  • Patent number: 10263256
    Abstract: Relating to a 5 V-class spinel type lithium nickel manganese-containing composite oxide having an operating potential of 4.5 V or more with respect to a Li metal reference potential, the present invention proposes a composite oxide being capable of improving cycle properties while suppressing the amount of gas generation under high temperature environments and of increasing thermodynamical stability of a positive electrode in a fully charged state. Proposed is a spinel type lithium nickel manganese-containing composite oxide represented by a general formula [Li(LiaNiyMn2-a-b-y-z-?TibAlzM?)O4-?] (where 0<a, 0<b, 0.30?y<0.60, 0<z, 0??, 2-a-b-y-z-?<1.7, 3?b/a?8, 0.1<b+z+?, 0<z/b?1, and M represents one or two or more metal elements selected from the group consisting of Mg, Fe, Co, Ba, Cr, W, Mo, Y, Zr, Nb, and Ce).
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 16, 2019
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuya Mitsumoto, Hideaki Matsushima, Shinya Kagei
  • Publication number: 20190058191
    Abstract: Proposed is a novel lithium metal composite oxide having a layered structure, which is capable of improving the cycle characteristics in the case of using as a positive electrode active material for a battery. Proposed is a lithium metal composite oxide having a layered structure, which is represented by Li1+xNi1?x-?-?-?Mn?Co?M?O2 (wherein 0?x?0.1, 0.01???0.35, 0.01???0.35, 0???0.05, and M comprises at least one or more elements selected from the group consisting of Al, Mg, Ti, Fe, Zr, W, Y, and Nb), wherein the amount of residual Li2CO3 present in secondary particles is 0.03 to 0.3 wt %.
    Type: Application
    Filed: February 27, 2017
    Publication date: February 21, 2019
    Inventors: Tetsuya Mitsumoto, Toshikazu Matsuyama, Daisuke Washida, Daisuke Inoue, Hideaki Matsushima, Shinya Kagei
  • Publication number: 20190051900
    Abstract: Provided is a spinel-type lithium-manganese-containing complex oxide that is related to a 5 V-class spinel, and with which output characteristics and charge-discharge cycle ability can be enhanced while suppressing gas generation. Proposed is a spinel-type lithium-manganese-containing complex oxide comprising at least Li, Mn, O, and two or more other elements, and having an operating potential of 4.5 V or more with respect to a metal Li reference potential, wherein: D50 is 0.5 to 9 ?m; a value of (|mode diameter?D50|/mode diameter)×100 is 0 to 25%; a value of (|mode diameter?D10|/mode diameter)×100 is 20 to 58%; a ratio of average primary particle diameter/D50, which is calculated from an average primary particle diameter calculated from a SEM image and the D50, is 0.20 to 0.99; and a primary particle is a polycrystal.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 14, 2019
    Inventors: Kyohei Yamaguchi, Tetsuya Mitsumoto, Hideaki Matsushima, Shinya Kagei