Patents by Inventor Tetsuya Nukami

Tetsuya Nukami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090263005
    Abstract: An impurity measuring device includes a table (T) on which a sample (S) is to be placed with its fracture surface (h) facing up, an illuminating means (7) for irradiating the fracture surface (h) with light (L) from a plurality of directions, an image sensing means for sensing an image of the fracture surface (h) irradiated with the light (L), continuous tone color image processing means for processing the sensed image into a continuous tone color image, and a binarizing means for binarizing the continuous tone color image through comparison between the result of the continuous tone color image processing and a threshold value. As the fracture surface (h) is irradiated with the light (L) from the plurality of directions, the image obtained by sensing the image of the fracture surface (h) is free from shading or optical irregularities caused by minute irregularities on the fracture surface (h).
    Type: Application
    Filed: June 23, 2009
    Publication date: October 22, 2009
    Inventors: Yukio KURAMASU, Tetsuya NUKAMI
  • Publication number: 20060228017
    Abstract: An impurity measuring device includes a table (T) on which a sample (S) is to be placed with its fracture surface (h) facing up, an illuminating means (7) for irradiating the fracture surface (h) with light (L) from a plurality of directions, an image sensing means for sensing an image of the fracture surface (h) irradiated with the light (L), continuous tone color image processing means for processing the sensed image into a continuous tone color image, and a binarizing means for binarizing the continuous tone color image through comparison between the result of the continuous tone color image processing and a threshold value. As the fracture surface (h) is irradiated with the light (L) from the plurality of directions, the image obtained by sensing the image of the fracture surface (h) is free from shading or optical irregularities caused by minute irregularities on the fracture surface (h).
    Type: Application
    Filed: June 14, 2004
    Publication date: October 12, 2006
    Inventors: Yukio Kuramasu, Tetsuya Nukami
  • Patent number: 6899844
    Abstract: A method of producing a fine TiC particle-dispersing type Al—Sn based aluminum alloy includes the steps of: preparing either Al mother-alloy or metallic raw materials of the Al alloy and a green compact, in which TiC is dispersed; melting the Al mother-alloy or the metallic raw materials of the Al alloy to form an Al alloy melt; bringing the Al alloy melt and the green compact, in which TiC is dispersed, into contact with one another, thereby dispersing the TiC in the Al-alloy melt; casting the Al alloy melt, in which TiC is dispersed, into an aluminum-alloy ingot, in which TiC is dispersed; and rolling the aluminum-alloy ingot.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: May 31, 2005
    Assignees: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
  • Patent number: 6706126
    Abstract: Aluminum alloy, which consists of from 2 to 20% by weight of Sn, from 3% by weight or less of Cu, and from 0.3 to 5% by volume of TiC particles, the balance being Al and unavoidable impurities, exhibits improved fatigue resistance at a high temperature region, while maintaining compatibility at low temperature notwithstanding improved fatigue resistance.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: March 16, 2004
    Assignees: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
  • Publication number: 20040022663
    Abstract: A method of producing a fine TiC particle-dispersing type Al—Sn based aluminum alloy includes the steps of: preparing either Al mother-alloy or metallic raw materials of the Al alloy and a green compact, in which TiC is dispersed; melting the Al mother-alloy or the metallic raw materials of the Al alloy to form an Al alloy melt; bringing the Al alloy melt and the green compact, in which TiC is dispersed, into contact with one another, thereby dispersing the TiC in the Al-alloy melt; casting the Al alloy melt, in which TiC is dispersed, into an aluminum-alloy ingot, in which TiC is dispersed; and rolling the aluminum-alloy ingot.
    Type: Application
    Filed: April 4, 2003
    Publication date: February 5, 2004
    Applicants: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
  • Publication number: 20020192105
    Abstract: Aluminum alloy, which consists of from 2 to 20% by weight of Sn, from 3% by weight or less of Cu, and from 0.3 to 5% by volume of TiC particles, the balance being Al and unavoidable impurities, exhibits improved fatigue resistance at a high temperature region, while maintaining compatibility at low temperature notwithstanding improved fatigue resistance.
    Type: Application
    Filed: April 25, 2001
    Publication date: December 19, 2002
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
  • Patent number: 5441697
    Abstract: Very fine TiC whiskers having a mean diameter smaller than 1 micron are generated by pellets including Ti powder and graphite powder being added to a molten mass of pure Al or an Al alloy, or by a graphite powder being added to a molten mass of an Al alloy containing Ti, with argon gas being blown into the molten mass so as thereby to generate TiC whiskers in void spaces formed in the molten mass by bubbles of the gas. When the molten mass with the TiC whiskers thus formed therein is compressed, the interstices of the TiC whiskers generated in the void spaces are filled with the molten metal so as thereby to form colonial composite material portions dispersed in the molten mass, thus providing a metallic composite material reinforced by very fine TiC whiskers. The density of the colonial composite material portions can be increased by applying a filtering process to the molten mass.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: August 15, 1995
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Nukami, Tetsuya Suganuma
  • Patent number: 5336291
    Abstract: In order to produce easily and at low cost a metallic composite material incorporating metal carbide particles dispersed therein such that fine TiC particles and/or ZrC particles are uniformly dispersed in a matrix of Al or Al alloy, first, a pellet (16) is formed from Ti powder and/or Zr powder (10), graphite powder (12) and Al or Al alloy powder (14), then the pellet is infiltrated with molten Al or Al alloy, and thereafter the pellet is heated up to 1000.degree.-1800.degree. C. in an inactive atmosphere, so that TiC particles and/or ZrC particles are generated in the pellet. Then the pellet is dissolved in a molten bath of Al or Al alloy.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: August 9, 1994
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Nukami, Tetsuya Suganuma
  • Patent number: 5236032
    Abstract: A metal matrix composite material having uniformly dispersed intermetallic compounds and no micropores is manufactured by forming a porous preform including 60% to 80% by volume fine fragments essentially made of aluminum, 1% to 10% by volume fine fragments essentially made of nickel, copper or both, and 1% to 10% by volume fine fragments essentially made of titanium so that these fine fragments occupy in total 62% to 95% by volume of said preform, and at least a part of the preform is contacted with a melt of a matrix metal selected from aluminum, aluminum alloy, magnesium and magnesium alloy, so that the porous preform is infiltrated with the melt under no substantial application of pressure to the melt.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: August 17, 1993
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Nukami, Tetsuya Suganuma, Atsuo Tanaka, Jun Ohkijima, Yoshiaki Kajikawa, Masahiro Kubo