Patents by Inventor Tetsuya Uchikawa

Tetsuya Uchikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220275532
    Abstract: A group 13 nitride crystal layer is composed of a group 13 nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or the mixed crystals thereof, and the group 13 nitride crystal layer includes an upper surface and bottom surface. The group 13 nitride crystal layer includes high-luminance layers and low-luminance layers being present alternately, and the low-luminance layers have thicknesses of 3 or larger and 10 or smaller provided that 1 is assigned to a thickness of the high-luminance layer, when a cross section of the group 13 nitride crystal layer cut in a direction perpendicular to the upper surface is observed by cathode luminescence.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: Suguru NOGUCHI, Takayuki HIRAO, Yoshinori ISODA, Tetsuya UCHIKAWA
  • Patent number: 11278848
    Abstract: A separation membrane structure has partition walls including a honeycomb shaped porous ceramic body provided with a large number of pores, and cells to become through channels of a fluid are formed by the partition walls. The cells include separation cells and slit cells. In the separation cells, the intermediate layer is disposed on the surface of a substrate, and a separation layer is further formed. The intermediate layer has a structure where aggregate particles are bonded to one another by an inorganic bonding material having a thermal expansion coefficient equal to or higher than that of the aggregate particles.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: March 22, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Makoto Miyahara, Tetsuya Uchikawa, Makoto Teranishi, Makiko Ichikawa, Hideyuki Suzuki
  • Patent number: 11219879
    Abstract: An aluminophosphate-metal oxide bonded body including a metal oxide having a bonding surface on a part of the surface thereof, and aluminophosphate that is disposed on the bonding surface of the metal oxide, wherein an alkali metal, an alkaline earth metal or both of these is/are disposed on the bonding surface of the metal oxide, and the content rate of the alkali metal, alkaline earth metal or both is from 0.3 to 30.0% by mass with respect to all of the substances that are disposed on the bonding surface of the metal oxide. An aluminophosphate-metal oxide bonded body that provides a favorable bonded state even for complicated shapes is provided.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: January 11, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Hagio, Makoto Miyahara, Tetsuya Uchikawa, Makiko Ichikawa, Kenichi Noda, Kenji Yajima
  • Patent number: 11035055
    Abstract: It is provided a layer of a nitride of a group 13 element having a first main face and second main face. The layer of the nitride of the group 13 element includes a first void-depleted layer provided on the side of the first main face, a second void-depleted layer provided on the side of the second main face, and the void-distributed layer provided between the first void-depleted layer and second void-depleted layer.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: June 15, 2021
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshinori Isoda, Suguru Noguchi, Tetsuya Uchikawa, Takayuki Hirao, Takanao Shimodaira, Katsuhiro Imai
  • Publication number: 20190242029
    Abstract: It is provided a layer of a nitride of a group 13 element having a first main face and second main face. The layer of the nitride of the group 13 element includes a first void-depleted layer provided on the side of the first main face, a second void-depleted layer provided on the side of the second main face, and the void-distributed layer provided between the first void-depleted layer and second void-depleted layer.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yoshinori ISODA, Suguru NOGUCHI, Tetsuya UCHIKAWA, Takayuki HIRAO, Takanao SHIMODAIRA, Katsuhiro IMAI
  • Patent number: 10258933
    Abstract: Provided is a zeolite membrane manufactured by: subjecting a porous body to heat treatment at 400° C. or more in the presence of oxygen as pretreatment, before adhering zeolite seed crystals to a surface of the porous body; storing the porous body under an environment of humidity of 30% or more for 12 hours or more after the heat treatment; and subsequently adhering the zeolite seed crystals to the porous body. The zeolite membrane having oxygen eight-membered rings, which is manufactured by subjecting the porous body to the heat treatment, provides a value that is obtained by dividing a permeance of CF4 by a permeance of CO2 to be 0.015 or less, and has fewer defects.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 16, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Takeshi Hagio, Makoto Miyahara, Tetsuya Uchikawa, Naoko Inukai, Makiko Ichikawa
  • Patent number: 10190233
    Abstract: A group 13 element source, a flux comprising at least one of an alkali metal and an alkaline earth metal, and an additive being liquid at an ambient temperature are placed in a crystal growing vessel. The crystal growing vessel is heated and pressurized under a nitrogen atom-containing gas atmosphere to form a melt containing the group 13 element source, the flux and the additive. Evaporation of the additive is prevented until the flux is melted. The crystal of the nitride of the group 13 element is then grown in the melt.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: January 29, 2019
    Assignee: NGK INSULATORS, LTD.
    Inventors: Suguru Noguchi, Shuhei Higashihara, Takayuki Hirao, Tetsuya Uchikawa
  • Patent number: 9968891
    Abstract: Provided are a ceramic separation membrane structure improved in separation performance with no reduction in permeability, and a method for producing the structure. The ceramic separation membrane structure includes a ceramic porous body, a zeolite separation membrane disposed on the ceramic porous body, and a repair portion made of a repairing material of organic-inorganic hybrid silica. The organic-inorganic hybrid silica is a combination of an organic component and a silicon-containing inorganic component.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: May 15, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Kenji Yajima, Naoko Inukai, Makiko Ichikawa
  • Publication number: 20170283983
    Abstract: A group 13 element source, a flux comprising at least one of an alkali metal and an alkaline earth metal, and an additive being liquid at an ambient temperature are placed in a crystal growing vessel. The crystal growing vessel is heated and pressurized under a nitrogen atom-containing gas atmosphere to form a melt containing the group 13 element source, the flux and the additive. Evaporation of the additive is prevented until the flux is melted. The crystal of the nitride of the group 13 element is then grown in the melt.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Applicant: NGK INSULATORS, LTD.
    Inventors: Suguru Noguchi, Shuhei Higashihara, Takayuki Hirao, Tetsuya Uchikawa
  • Publication number: 20160016146
    Abstract: An aluminophosphate-metal oxide bonded body including a metal oxide having a bonding surface on a part of the surface thereof, and aluminophosphate that is disposed on the bonding surface of the metal oxide, wherein an alkali metal, an alkaline earth metal or both of these is/are disposed on the bonding surface of the metal oxide, and the content rate of the alkali metal, alkaline earth metal or both is from 0.3 to 30.0% by mass with respect to all of the substances that are disposed on the bonding surface of the metal oxide. An aluminophosphate-metal oxide bonded body that provides a favorable bonded state even for complicated shapes is provided.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventors: Takeshi HAGIO, Makoto MIYAHARA, Tetsuya UCHIKAWA, Makiko ICHIKAWA, Kenichi NODA, Kenji YAJIMA
  • Publication number: 20160016125
    Abstract: Provided are a ceramic separation membrane structure improved in separation performance with no reduction in permeability, and a method for producing the structure. The ceramic separation membrane structure includes a ceramic porous body 9, a zeolite separation membrane 33 disposed on the ceramic porous body 9, and a repair portion 34 made of a repairing material of organic-inorganic hybrid silica. The organic-inorganic hybrid silica is a combination of an organic component and a silicon-containing inorganic component.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventors: Tetsuya UCHIKAWA, Kenji YAJIMA, Naoko INUKAI, Makiko ICHIKAWA
  • Publication number: 20160008771
    Abstract: Provided is a zeolite membrane manufactured by: subjecting a porous body to heat treatment at 400° C. or more in the presence of oxygen as pretreatment, before adhering zeolite seed crystals to a surface of the porous body; storing the porous body under an environment of humidity of 30% or more for 12 hours or more after the heat treatment; and subsequently adhering the zeolite seed crystals to the porous body. The zeolite membrane having oxygen eight-membered rings, which is manufactured by subjecting the porous body to the heat treatment, provides a value that is obtained by dividing a permeance of CF4 by a permeance of CO2 to be 0.015 or less, and has fewer defects.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Kenji YAJIMA, Takeshi HAGIO, Makoto MIYAHARA, Tetsuya UCHIKAWA, Naoko INUKAI, Makiko ICHIKAWA
  • Publication number: 20150008178
    Abstract: There are disclosed a honeycomb shaped porous ceramic body to manufacture a honeycomb shaped ceramic separation membrane structure in which a separation performance does not deteriorate under a higher operation pressure than before, a manufacturing method for the porous body, and a honeycomb shaped ceramic separation membrane structure. The honeycomb shaped ceramic separation membrane structure 1 includes a honeycomb shaped substrate 30, an intermediate layer 31, an alumina surface layer 32, and a separation layer 33. The structure has the alumina surface layer 32 on the intermediate layer 31, whereby even when the insides of the cells 4 are pressurized, cracks are not easily generated in a porous body 9 or the separation layer 33 and the deterioration of the separation performance does not easily occur.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Makoto MIYAHARA, Makiko ICHIKAWA, Kenji YAJIMA, Makoto TERANISHI, Tetsuya UCHIKAWA, Hideyuki SUZUKI
  • Publication number: 20150008180
    Abstract: An object of the present invention is to provide a honeycomb shaped porous ceramic body in which a strength deteriorates less than before after a separation layer is formed, a manufacturing method for the porous ceramic body, and a honeycomb shaped ceramic separation membrane structure. A honeycomb shaped porous ceramic body 9 includes a honeycomb shaped substrate 30 and an intermediate layer. At least a part of the intermediate layer of the honeycomb shaped porous ceramic body 9 has a structure in which aggregate particles are bonded to one another by a component of an inorganic bonding material. The inorganic bonding material is titania.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Tetsuya UCHIKAWA, Makoto MIYAHARA, Makiko ICHIKAWA, Kenji YAJIMA, Makoto TERANISHI, Hideyuki SUZUKI
  • Publication number: 20150008177
    Abstract: A separation membrane structure 1 has partition walls 3 including a honeycomb shaped porous ceramic body 9 provided with a large number of pores, and cells 4 to become through channels of a fluid are formed by the partition walls 3. The cells 4 include separation cells 4a and slit cells 4b. In the separation cells 4a, the intermediate layer is disposed on the surface of a substrate 30, and a separation layer is further formed. The intermediate layer has a structure where aggregate particles are bonded to one another by an inorganic bonding material having a thermal expansion coefficient equal to or higher than that of the aggregate particles.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Kenji YAJIMA, Makoto MIYAHARA, Tetsuya UCHIKAWA, Makoto TERANISHI, Makiko ICHIKAWA, Hideyuki SUZUKI
  • Patent number: 8778056
    Abstract: There are provided a process for producing a zeolite membrane which, even when large, has few defects and which has higher separation performance than conventional zeolite membranes, and a zeolite membrane obtained by the process. In the process, the structure-directing agent is removed in the atmosphere having an O2 concentration of 22.0 vol % or more. Specifically, the process includes: a particle adhesion step of allowing zeolite particles functioning as seeds to flow down the surface of the substrate by means of the weight of the slurry itself, thereby adhering to the substrate and a membrane-forming step of forming a zeolite membrane on the substrate by immersing the substrate having the zeolite particles adhering thereto in sol containing the structure-directing agent for hydrothermal synthesis, thereby forming a zeolite membrane on the substrate.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: July 15, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Kenji Yajima, Makiko Niino
  • Patent number: 8597612
    Abstract: Disclosed is a method for producing a DDR zeolite, which can be carried out using materials that are less harmful to the environment. The method for producing a DDR zeolite has a short hydrothermal synthesis time and does not require continuous agitation of the raw material solution. Specifically disclosed is a method for producing a DDR zeolite, which comprises: a raw material solution preparation step in which a raw material solution that contains 1-adamantaneamine, silica (SiO2) and water at a molar ratio 1-adamantaneamine/SiO2 of 0.002-0.5 and a molar ratio water/SiO2 of 10-500 but does not contain ethylenediamine is prepared; and a crystal growth step in which hydrothermal synthesis is carried out while having the raw material solution and a DDR zeolite powder in contact with each other, so that crystals of DDR zeolite are grown using the DDR zeolite powder as a seed crystal.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: December 3, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Makiko Niino
  • Patent number: 8545802
    Abstract: There is provided a process for producing a DDR-type zeolite having: a raw material solution preparation step of preparing a raw material solution containing 1-adamantaneamine hydrochloride, silica (SiO2), and water at a 1-adamantaneamine hydrochloride/SiO2 molar ratio of 0.002 to 0.5 and a water/SiO2 molar ratio of 10 to 500, and a crystal growth step of subjecting the raw material solution and a DDR-type zeolite powder to a heat treatment in a state that both the raw material solution and the DDR-type zeolite powder are brought into contact with each other to grow crystals of the DDR-type zeolite by the use of the DDR-type zeolite powder as seed crystals.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 1, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Kenji Yajima
  • Patent number: 8377838
    Abstract: A method is provided for producing a DDR type zeolite membrane, including a membrane formation step of immersing a porous substrate having a DDR type zeolite seed crystal adhered thereon, in a raw material solution containing 1-adamantaneamine, silica (SiO2) and water, and conducting a hydrothermal synthesis of DDR type zeolite to form a 1-adamantaneamine-containing DDR type zeolite membrane on the porous substrate to produce a precursor of DDR type zeolite membrane-containing body, and a burning step of heating the precursor at 400° C. or above and at 550° C. or below to burn and remove the 1-adamantaneamine contained in the DDR type zeolite membrane.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Kenji Yajima, Hisayoshi Nonaka, Toshihiro Tomita
  • Publication number: 20120272826
    Abstract: There are provided a process for producing a zeolite membrane which, even when large, has few defects and which has higher separation performance than conventional zeolite membranes, and a zeolite membrane obtained by the process. In the process, the structure-directing agent is removed in the atmosphere having an O2 concentration of 22.0 vol % or more. Specifically, the process includes: a particle adhesion step of allowing zeolite particles functioning as seeds to flow down the surface of the substrate by means of the weight of the slurry itself, thereby adhering to the substrate and a membrane-forming step of forming a zeolite membrane on the substrate by immersing the substrate having the zeolite particles adhering thereto in sol containing the structure-directing agent for hydrothermal synthesis, thereby forming a zeolite membrane on the substrate.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Tetsuya UCHIKAWA, Kenji Yajima, Makiko Niino