Patents by Inventor Thad Eugene Starner

Thad Eugene Starner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210109598
    Abstract: A method including receiving sound data captured by a wearable device of the user, the sound data indicative of contact between a first portion of the user wearing the wearable device and a second portion of the user wearing the wearable device; receiving motion data captured by the wearable device of the user, the motion data indicative of at least a movement of the first portion of the user wearing the wearable device; and determining, by a processor, based at least in part on the sound data and the motion data, a user input associated with the contact between a first portion of the user wearing the wearable device and a second portion of the user wearing the wearable device and the movement of the first portion of the user wearing the wearable device.
    Type: Application
    Filed: September 6, 2018
    Publication date: April 15, 2021
    Inventors: Cheng Zhang, Gregory D. Abowd, Omer Inan, Pranav Kundra, Thomas Ploetz, Yiming Pu, Thad Eugene Starner, Anandghan Waghmare, Xiaoxuan Wang, Kenneth A. Cunnefare, Qiuyue Xue
  • Patent number: 10932063
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: February 23, 2021
    Assignee: Georgia Tech Research Corporation
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Patent number: 10698999
    Abstract: This document describes authentication using an interactive cord. An interactive cord includes a cable, and a fabric cover that covers the cable. The fabric cover includes one or more conductive threads woven into the fabric cover to form one or more capacitive touchpoints which are configured to enable reception of touch input that causes a change in capacitance to the one or more conductive threads. The interactive cord can be used to authenticate a user. For example, rather than using a password entered into a computing device, a touch input pattern can be provided to interactive cord that is coupled to the computing device to authenticate the user.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer
  • Patent number: 10665205
    Abstract: Example methods and systems for determining correlated movements associated with movements caused by driving a vehicle are provided. In an example, a computer-implemented method includes identifying a threshold number of sets of correlated movements. The method further includes determining that the threshold number of sets of correlated movements is associated with movements caused by driving a vehicle. The method still further includes causing the wearable computing system to select a driving user interface for the wearable computing system.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: May 26, 2020
    Assignee: Google LLC
    Inventors: Joshua Weaver, Thad Eugene Starner
  • Publication number: 20190377440
    Abstract: This document describes techniques and devices for detecting twist input with an interactive cord. An interactive cord may be constructed with one or more conductive yarns wrapped around a cable in a first direction (e.g., clockwise), and one or more conductive yarns wrapped around the cable in a second direction that is opposite the first direction (e.g., counter-clockwise). A controller measures one or more capacitance values associated with the conductive yarns. In response to detecting a change in the one or more capacitance values, the controller determines that the change in the capacitance values corresponds to twist input caused by the user twisting the interactive cord. Then, the controller initiates one or more functions based on the twist input, such as by controlling audio to a headset by increasing or decreasing the volume, scrolling through menu items, and so forth.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Applicant: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer, Greg Ellis Priest-Dorman, Jonathan Moeller, Nidhi Rathi, Jianyi Liu, Yao Ding, Chi Kin Benjamin Leung
  • Publication number: 20190373375
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 5, 2019
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Patent number: 10437882
    Abstract: Methods and devices for initiating a search of an object are disclosed. In one embodiment, a method is disclosed that includes receiving video data recorded by a camera on a wearable computing device, where the video data comprises at least a first frame and a second frame. The method further includes, based on the video data, detecting an area in the first frame that is at least partially bounded by a pointing device and, based on the video data, detecting in the second frame that the area is at least partially occluded by the pointing device. The method still further includes initiating a search on the area.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 8, 2019
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Irfan Essa, Hayes Solos Raffle, Daniel Aminzade
  • Patent number: 10402020
    Abstract: This document describes techniques and devices for detecting twist input with an interactive cord. An interactive cord may be constructed with one or more conductive yarns wrapped around a cable in a first direction (e.g., clockwise), and one or more conductive yarns wrapped around the cable in a second direction that is opposite the first direction (e.g., counter-clockwise). A controller measures one or more capacitance values associated with the conductive yarns. In response to detecting a change in the one or more capacitance values, the controller determines that the change in the capacitance values corresponds to twist input caused by the user twisting the interactive cord. Then, the controller initiates one or more functions based on the twist input, such as by controlling audio to a headset by increasing or decreasing the volume, scrolling through menu items, and so forth.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: September 3, 2019
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer, Greg Ellis Priest-Dorman, Jonathan Moeller, Nidhi Rathi, Jianyi Liu, Yao Ding, Chi Kin Benjamin Leung
  • Patent number: 10394057
    Abstract: An eye-mountable device including a lens including a polymeric material, the lens operable to be removably mounted over a corneal surface of an eye and to be compatible with a motion of an eyelid when the concave surface is so mounted; a sensor coupled to the lens and operable to provide output data indicative of whether an eyelid of an eye on which the lens is mounted is closed; and a display operable to display a light signal in response to the output data from the sensor that the eyelid is closed. A method including determining whether an eyelid of a wearer of an eye-mountable device is closed; and when an eyelid of a wearer is closed, sending a light signal from the eye-mountable device.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: August 27, 2019
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Thad Eugene Starner, Michael Patrick Johnson, Brian Otis, Max Benjamin Braun, Nathan Pletcher, Joshua N. Haddock
  • Patent number: 10341113
    Abstract: Methods, apparatus, and computer-readable media are described herein related to biometric authentication. A first computing device can detect a machine-readable code displayed by a second computing device, where the machine-readable code can identify protected information viewable via the second computing device. In response to detecting the machine-readable code, the first computing device can acquire biometric data via one or more biometric sensors associated with the first computing device. Based at least in part on the biometric data, the first computing device can generate an authentication message that includes authentication information and identifies the protected information. The first computing device can then send the authentication message to an authentication server for verification of the authentication information, where verification of the authentication information can allow access to the protected information via the second computing device.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: July 2, 2019
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Michael Patrick Johnson
  • Publication number: 20190175077
    Abstract: A portable electronic device including: a plurality of sensors configured to generate, in response to a first contact with a body of a user in a vicinity of the portable electronic device, one or more first input signals; a microprocessor; and a memory having stored thereon instructions that, when executed by the microprocessor, control the microprocessor to execute, in response to an analysis of the one or more first input signals indicating that the first contact corresponds to a first gesture, and by the microprocessor, a first command corresponding to the first gesture.
    Type: Application
    Filed: August 15, 2017
    Publication date: June 13, 2019
    Inventors: Cheng Zhang, Gregory D. Abowd, Omer Inan, Thad Eugene Starner
  • Publication number: 20190179525
    Abstract: Methods and systems involving resolution of directional ambiguity between a graphical display and a touch-based user-interface are disclosed herein.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 13, 2019
    Inventors: Thad Eugene Starner, Nirmal Patel, Michael Patrick Johnson, Adrian Wong
  • Patent number: 10222924
    Abstract: This document describes techniques and devices for an interactive cord with resistance touchpoints. An interactive cord includes an audio wire, and a fabric cover that covers the audio wire. The fabric cover includes at least one conductive thread integrated into the fabric cover to form at least one touchpoint at which the conductive thread makes contact with the audio wire when the touchpoint is pressed. The contact of the conductive thread with the audio wire creates a resistance value that is mapped to a control. The resistance value is based on a resistance of the conductive thread and a length of the conductive thread from a base of the interactive cord to the touchpoint. The resistance value is detectable by a controller implemented at a computing device that is coupled to the interactive cord. In response to detection of the resistance value, the controller triggers the control.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: March 5, 2019
    Assignee: Google LLC
    Inventors: Karissa A. Sawyer, Seungyon Lee, Seth Raphael, Thad Eugene Starner, Jonathan Moeller
  • Patent number: 10194121
    Abstract: A computing device configured to dynamically capture and store experience data received the by the computing device. An example method involves: (a) receiving first experience data that indicates at least one environmental condition; (b) selecting a capture mode from a plurality of capture modes based on the at least one environmental condition, where the capture mode defines a manner of capturing experience data; and (c) causing the computing device to operate in the selected capture mode, where operating in the selected capture mode includes capturing second experience data in the manner defined by the capture mode. The method may optionally additionally involve: (d) after entering the capture mode, receiving third experience data; (e) determining that the capture mode should be exited based on at least the received third experience data; and (f) based on the determination that the capture mode should be exited, exiting the capture mode such that at least one type of experience data is not captured.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: January 29, 2019
    Assignee: Google LLC
    Inventors: Mat Balez, Nirmal Patel, Thad Eugene Starner
  • Publication number: 20190004635
    Abstract: This document describes techniques and devices for an interactive cord with resistance touchpoints. An interactive cord includes an audio wire, and a fabric cover that covers the audio wire. The fabric cover includes at least one conductive thread integrated into the fabric cover to form at least one touchpoint at which the conductive thread makes contact with the audio wire when the touchpoint is pressed. The contact of the conductive thread with the audio wire creates a resistance value that is mapped to a control. The resistance value is based on a resistance of the conductive thread and a length of the conductive thread from a base of the interactive cord to the touchpoint. The resistance value is detectable by a controller implemented at a computing device that is coupled to the interactive cord. In response to detection of the resistance value, the controller triggers the control.
    Type: Application
    Filed: March 7, 2018
    Publication date: January 3, 2019
    Applicant: Google LLC
    Inventors: Karissa A. Sawyer, Seungyon Lee, Seth Raphael, Thad Eugene Starner, Jonathan Moeller
  • Publication number: 20180357405
    Abstract: This document describes authentication using an interactive cord. An interactive cord includes a cable, and a fabric cover that covers the cable. The fabric cover includes one or more conductive threads woven into the fabric cover to form one or more capacitive touchpoints which are configured to enable reception of touch input that causes a change in capacitance to the one or more conductive threads. The interactive cord can be used to authenticate a user. For example, rather than using a password entered into a computing device, a touch input pattern can be provided to interactive cord that is coupled to the computing device to authenticate the user.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 13, 2018
    Applicant: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer
  • Patent number: 10146323
    Abstract: A wearable computing device such as a head-mounted display (HMD) may be equipped with a magnetometer for detecting presence and motion of a hand-wearable magnet (HWM). The HMD may analyze magnetic field measurements of the magnetometer to determine when the HWM moves within a threshold distance of the magnetometer, and may thereafter determine one or more patterns of motion of the HWM based the magnetic field measurements. The HMD may operate in a background detection state in order to determine a background magnetic field strength and to monitor for magnetic disturbances from the HWM. Upon occurrence of a trigger event corresponding to magnetic disturbance above a threshold level, the HMD may transition to operating in a gesture detection state in which it analyzes magnetometer measurements for correspondence with known gestures. Upon recognizing a known gesture, the HMD may carry out one or more actions based on the recognized known gesture.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: December 4, 2018
    Assignee: Google LLC
    Inventors: Edward Keyes, Michael Patrick Johnson, Thad Eugene Starner
  • Patent number: 10149036
    Abstract: This document describes techniques and devices for preventing false positives with an interactive cord. An interactive cord includes a cable, and fabric cover that covers the cable. The fabric cover includes one or more conductive threads woven into the fabric cover to form one or more capacitive touchpoints which are configured to enable reception of touch input that causes a change in capacitance to the one or more conductive threads. A controller, implemented at the interactive cord or a computing device coupled to the interactive cord, can detect the change in capacitance and trigger one or more functions associated with the one or more capacitive touchpoints. In one or more implementations, the interactive cord is designed to prevent “false positives” which may occur from accidental contact with the touchpoints, such as when the interactive cord makes contact with the user's body or a conductive surface.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 4, 2018
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer, Greg Ellis Priest-Dorman
  • Patent number: 10121388
    Abstract: Disclosed herein are methods, systems, computer readable media, and apparatuses for conveying chorded input to a user. Chorded input can be conveyed by one or more sequences of stimulation events, wherein each sequence represents a particular chorded input.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: November 6, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Caitlyn Seim, Thad Eugene Starner
  • Patent number: 10111304
    Abstract: This document describes an interactive cord with integrated light sources. An interactive cord includes a cable, a cover that covers the cable, and a plurality of light sources integrated into the cover. The cover includes capacitive touchpoints that enable reception of touch input that causes a change in capacitance to one or more conductive threads effective to trigger a function at a computing device. Different conductive threads can be used at different capacitive touchpoints to trigger different functions. The light sources are configured to indicate a position of a respective capacitive touchpoint on the cover.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: October 23, 2018
    Assignee: Google LLC
    Inventors: Thad Eugene Starner, Karissa A. Sawyer, Greg Ellis Priest-Dorman