Patents by Inventor Thaddeus G. Dziura

Thaddeus G. Dziura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11099137
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: August 24, 2021
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Publication number: 20200393386
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 10794839
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 6, 2020
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Publication number: 20200271595
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 10325004
    Abstract: Optimization of optical parametric models for structural analysis using optical critical dimension metrology is described. A method includes determining a first optical model fit for a parameter of a structure. The first optical model fit is based on a domain of quantities for a first model of the structure. A first near optical field response is determined for a first quantity of the domain of quantities and a second near optical field response is determined for a second, different quantity of the domain of quantities. The first and second near optical field responses are compared to locate a common region of high optical field intensity for the parameter of the structure. The first model of the structure is modified to provide a second, different model of the structure. A second, different optical model fit is determined for the parameter of the structure based on the second model of the structure.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: June 18, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Thaddeus G. Dziura, Yung-Ho Chuang, Bin-Ming Benjamin Tsai, Xuefeng Liu, John J. Hench
  • Patent number: 9310296
    Abstract: Optimization of optical parametric models for structural analysis using optical critical dimension metrology is described. A method includes determining a first optical model fit for a parameter of a structure. The first optical model fit is based on a domain of quantities for a first model of the structure. A first near optical field response is determined for a first quantity of the domain of quantities and a second near optical field response is determined for a second, different quantity of the domain of quantities. The first and second near optical field responses are compared to locate a common region of high optical field intensity for the parameter of the structure. The first model of the structure is modified to provide a second, different model of the structure. A second, different optical model fit is determined for the parameter of the structure based on the second model of the structure.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 12, 2016
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Thaddeus G. Dziura, Yung-Ho Chuang, Bin-ming Benjamin Tsai, Xuefeng Liu, John J. Hench
  • Patent number: 9311431
    Abstract: The disclosure is directed to improving optical metrology for a sample with complex structural attributes utilizing custom designed secondary targets. At least one parameter of a secondary target may be controlled to improve sensitivity for a selected parameter of a primary target and/or to reduce correlation of the selected parameter with other parameters of the primary target. Parameters for the primary and secondary target may be collected. The parameters may be incorporated into a scatterometry model. Simulations utilizing the scatterometry model may be conducted to determine a level of sensitivity or a level of correlation for the selected parameter of the primary target. The controlled parameter of the secondary target may be modified until a selected level of sensitivity or a selected level of correlation is achieved.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 12, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Sungchul Yoo, Andrei V. Shchegrov, Thaddeus G. Dziura, InKyo Kim, SeungHwan Lee, ByeoungSu Hwang, Leonid Poslavsky
  • Publication number: 20120323356
    Abstract: Optimization of optical parametric models for structural analysis using optical critical dimension metrology is described. A method includes determining a first optical model fit for a parameter of a structure. The first optical model fit is based on a domain of quantities for a first model of the structure. A first near optical field response is determined for a first quantity of the domain of quantities and a second near optical field response is determined for a second, different quantity of the domain of quantities. The first and second near optical field responses are compared to locate a common region of high optical field intensity for the parameter of the structure. The first model of the structure is modified to provide a second, different model of the structure. A second, different optical model fit is determined for the parameter of the structure based on the second model of the structure.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Inventors: Thaddeus G. Dziura, Yung-Ho Chuang, Bin-Ming Benjamin Tsai, Xuefeng Liu, John J. Hench
  • Patent number: 8090558
    Abstract: A method is presented for selecting the order in which parameters are evaluated for inclusion in a model of a film stack, which is by ranking them according to measurement precision. Further, a method is presented for determining which parameters are to be floated, set, or discarded from the model, which is by determining whether average chi-square and chi-square uniformity decreases or increases when the parameter is added to the model. In this manner, a model for the film stack can be quickly assembles with a high degree of accuracy.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: January 3, 2012
    Assignee: KLA-Tencor Corporation
    Inventor: Thaddeus G. Dziura
  • Patent number: 7933016
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 26, 2011
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Publication number: 20100091284
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 15, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Patent number: 7663753
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb; target C is designed to have an offset Xc; and target D is designed to have an offset Xd. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd. The targets A, B, C and D are illuminated with electromagnetic radiation to obtain spectra SA, SB, SC, and SD from targets A, B, C, and D, respectively. Any overlay error between the first structures and the second structures is then determined using a linear approximation based on the obtained spectra SA, SB, SC, and SD.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 16, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Ken Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Patent number: 7656512
    Abstract: A method for determining one or more process parameter settings of a photolithographic system is disclosed.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 2, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Thaddeus G. Dziura, Ady Levy, Chris A. Mack
  • Publication number: 20080192221
    Abstract: A method for determining one or more process parameter settings of a photolithographic system is disclosed.
    Type: Application
    Filed: April 11, 2008
    Publication date: August 14, 2008
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Walter Mieher, Thaddeus G. Dziura, Ady Levy, Chris A. Mack
  • Patent number: 7382447
    Abstract: A method for determining one or more process parameter settings of a photolithographic system is disclosed.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: June 3, 2008
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter Mieher, Thaddeus G. Dziura, Ady Levy, Chris A. Mack
  • Patent number: 7317531
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. In one embodiment, a method for determining overlay between a plurality of first structures in a first layer of a sample and a plurality of second structures in a second layer of the sample is disclosed. Targets A, B, C and D that each include a portion of the first and second structures are provided. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb between its first and second structures portions; target C is designed to have an offset Xc between its first and second structures portions; and target D is designed to have an offset Xd between its first and second structures portions. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 8, 2008
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanesky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Publication number: 20040169861
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. In one embodiment, a method for determining overlay between a plurality of first structures in a first layer of a sample and a plurality of second structures in a second layer of the sample is disclosed. Targets A, B, C and D that each include a portion of the first and second structures are provided. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb between its first and second structures portions; target C is designed to have an offset Xc between its first and second structures portions; and target D is designed to have an offset Xd between its first and second structures portions. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd.
    Type: Application
    Filed: December 5, 2003
    Publication date: September 2, 2004
    Applicant: KLA-Tenor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanesky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Publication number: 20030048458
    Abstract: A method for determining one or more process parameter settings of a photolithographic system is disclosed.
    Type: Application
    Filed: June 26, 2002
    Publication date: March 13, 2003
    Inventors: Walter Mieher, Thaddeus G. Dziura, Ady Levy, Chris A. Mack