Patents by Inventor Thaddeus Strusinski

Thaddeus Strusinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12358083
    Abstract: A weld filler is proposed which significantly improves the weldability of some nickel-based superalloys and includes the following constituents (in wt %): 11.2%-15.6% chromium (Cr), 9.6%-11.4% cobalt (Co) 2.4%-5.0%, molybdenum (Mo) 0.1%-3.3%, 4.4%-7.5% tungsten (W), 1.4%-2.6% tantalum (Ta), 3.0%-4.8% aluminum (Al), 0.4-1.0% titanium (Ti), 0.07%-0.08% carbon (C), 0.5%-1.4% hafnium (Hf), trace elements, and remainder nickel. A method is also provided. The method includes providing a nickel-based substrate to weld, applying a ductile weld filler having a closely matched coefficient of thermal expansion to a surface of the substrate, applying heat to melt the weld filler to form molten weld filler, welding the substrate with the weld filler at ambient temperature, and resolidifying the molten weld filler to form a solidified joint material.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: July 15, 2025
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Thaddeus Strusinski, Matthew H. Lang
  • Patent number: 11794287
    Abstract: A weld filler is proposed which significantly improves the weldability of some nickel-based superalloys and includes the following constituents (in wt %): 14.6%-15.6% chromium (Cr), 10.4%-11.4% cobalt (Co) 4.6%-5.0%, molybdenum (Mo), 4.4%-5.2% tungsten (W), 1.4%-1.8% tantalum (Ta), 3.0%-3.7% aluminum (Al), 0.7-1.3% titanium (Ti), 0.14%-0.16% carbon (C), 0.0425-0.0575% zirconium, 0.7%-1.2% hafnium (Hf), at most 0.15% iron, at most 0.1% manganese, at most 0.1% silicon, at most 0.1% vanadium, at most 0.015% boron, trace elements, and remainder nickel.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: October 24, 2023
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Thaddeus Strusinski
  • Publication number: 20210308809
    Abstract: A weld filler is proposed which significantly improves the weldability of some nickel-based superalloys and includes the following constituents (in wt %): 11.2%-15.6% chromium (Cr), 9.6%-11.4% cobalt (Co) 2.4%-5.0%, molybdenum (Mo) 0.1%-3.3%, 4.4%-7.5% tungsten (W), 1.4%-2.6% tantalum (Ta), 3.0%-4.8% aluminum (Al), 0.4-1.0% titanium (Ti), 0.07%-0.08% carbon (C), 0.5%-1.4% hafnium (Hf), trace elements, and remainder nickel. A method is also provided. The method includes providing a nickel-based substrate to weld, applying a ductile weld filler having a closely matched coefficient of thermal expansion to a surface of the substrate, applying heat to melt the weld filler to form molten weld filler, welding the substrate with the weld filler at ambient temperature, and resolidifying the molten weld filler to form a solidified joint material.
    Type: Application
    Filed: May 1, 2018
    Publication date: October 7, 2021
    Inventors: Thaddeus Strusinski, Matthew H. Lang
  • Publication number: 20210283728
    Abstract: A weld filler is proposed which significantly improves the weldability of some nickel-based superalloys and includes the following constituents (in wt %): 14.6%-15.6% chromium (Cr), 10.4%-11.4% cobalt (Co) 4.6%-5.0%, molybdenum (Mo), 4.4%-5.2% tungsten (W), 1.4%-1.8% tantalum (Ta), 3.0%-3.7% aluminum (Al), 0.7-1.3% titanium (Ti), 0.14%-0.16% carbon (C), 0.0425-0.0575% zirconium, 0.7%-1.2% hafnium (Hf), at most 0.15% iron, at most 0.1% manganese, at most 0.1% silicon, at most 0.1% vanadium, at most 0.015% boron, trace elements, and remainder nickel.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventor: Thaddeus Strusinski
  • Publication number: 20060131366
    Abstract: A weld process cuitable for repairing precipitation-strengthened superalloys, and particularly gamma prime-strengthened nickel-based superalloys. The process entails forming a weldment in a cavity present in a surface of an article formed of a precipitation-strengthened superalloy. The cavity has a root region and a cap region between the root region and the surface of the article. A solid body formed of a superalloy composition is placed in the root region of the cavity so as to occupy a first portion but not a second portion of the root region. A first filler material formed of a solid solution-strengthened superalloy is then weld-deposited in the second portion of the root region. Subsequently, a second filler material formed of a precipitation-strengthened superalloy is weld-deposited in the cap region of the cavity.
    Type: Application
    Filed: December 22, 2004
    Publication date: June 22, 2006
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Schaeffer, Ariel Jacala, Doyle Lewis, Thaddeus Strusinski, Frederick Dantzler, Eugene Clemens, Paul Wilson, Michael Butler, Jeffrey Killough