Patents by Inventor Thadeous Bamford
Thadeous Bamford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12227837Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: May 16, 2022Date of Patent: February 18, 2025Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Patent number: 12163219Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: September 7, 2022Date of Patent: December 10, 2024Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20230377908Abstract: A gas distribution arrangement to provide gas mixtures to processing stations in a substrate processing system comprises a first and second valve inlet blocks to supply first and second precursor gas mixtures. The first valve inlet block is arranged above the processing stations and comprises a first housing that encloses a first plurality of valves in fluid communication with the processing stations and a first precursor gas manifold, a first co-flow gas manifold, and a first divert outlet manifold in fluid communication with the first plurality of valves. The second valve inlet block is arranged above the first valve inlet block and comprises a second housing that encloses a second plurality of valves in fluid communication with the processing stations and a second precursor gas manifold, a second co-flow gas manifold, and a second divert outlet manifold in fluid communication with the second plurality of valves.Type: ApplicationFiled: September 24, 2021Publication date: November 23, 2023Inventor: Thadeous BAMFORD
-
Publication number: 20230374657Abstract: An evaporator assembly for a processing chamber in a substrate processing system comprises a canister configured to store and heat precursor liquid and an evaporator valve block mounted the canister. The evaporator valve block comprises a body, a plurality of valves mounted on the body, a carrier gas inlet in fluid communication with the canister, a precursor liquid inlet in fluid communication with the canister, a vapor port in fluid communication with the canister, and a vapor outlet in fluid communication with the processing chamber. Each of the plurality of valves is in fluid communication with respective flow paths contained within the evaporator valve block.Type: ApplicationFiled: October 5, 2021Publication date: November 23, 2023Inventors: Thadeous BAMFORD, Jorgr REYES, Emile DRAPER
-
Publication number: 20230002891Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: September 7, 2022Publication date: January 5, 2023Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Publication number: 20220275504Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Patent number: 11365479Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: July 22, 2020Date of Patent: June 21, 2022Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20200347497Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: July 22, 2020Publication date: November 5, 2020Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Patent number: 10760158Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: April 16, 2018Date of Patent: September 1, 2020Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
-
Publication number: 20190185999Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: April 16, 2018Publication date: June 20, 2019Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare