Patents by Inventor Thanh Tien Vu
Thanh Tien Vu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12210842Abstract: Techniques for using logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system. The chatbot system can input the utterance into a machine-learning model including a set of binary classifiers. Each binary classifier of the set of binary classifiers can be associated with a modified logit function. The method can also include the machine-learning model using the modified logit function to generate a set of distance-based logit values for the utterance. The method can also include the machine-learning model applying an enhanced activation function to the set of distance-based logit values to generate a predicted output. The method can also include the chatbot system classifying, based on the predicted output, the utterance as being associated with the particular class.Type: GrantFiled: December 19, 2023Date of Patent: January 28, 2025Assignee: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Patent number: 12210830Abstract: In some aspects, a computing device may receive, at a data processing system, a set of utterances for training or inferencing with a named entity recognizer to assign a label to each token piece from the set of utterances. The computing device may determine a length of each utterance in the set and when the length of the utterance exceeds a pre-determined threshold of token pieces: dividing the utterance into a plurality of overlapping chunks of token pieces; assigning a label together with a confidence score for each token piece in a chunk; determining a final label and an associated confidence score for each chunk of token pieces by merging two confidence scores; determining a final annotated label for the utterance based at least on the merging the two confidence scores; and storing the final annotated label in a memory.Type: GrantFiled: May 20, 2022Date of Patent: January 28, 2025Assignee: Oracle International CorporationInventors: Thanh Tien Vu, Tuyen Quang Pham, Mark Edward Johnson, Thanh Long Duong, Ying Xu, Poorya Zaremoodi, Omid Mohamad Nezami, Budhaditya Saha, Cong Duy Vu Hoang
-
Publication number: 20240232541Abstract: Techniques for using enhanced logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system and inputting the utterance into a machine-learning model including a series of network layers. A final network layer of the series of network layers can include a logit function. The machine-learning model can map a first probability for a resolvable class to a first logit value using the logit function. The machine-learning model can map a second probability for a unresolvable class to an enhanced logit value. The method can also include the chatbot system classifying the utterance as the resolvable class or the unresolvable class based on the first logit value and the enhanced logit value.Type: ApplicationFiled: March 20, 2024Publication date: July 11, 2024Applicant: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Patent number: 12019994Abstract: Techniques for using logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system. The chatbot system can input the utterance into a machine-learning model including a set of binary classifiers. Each binary classifier of the set of binary classifiers can be associated with a modified logit function. The method can also include the machine-learning model using the modified logit function to generate a set of distance-based logit values for the utterance. The method can also include the machine-learning model applying an enhanced activation function to the set of distance-based logit values to generate a predicted output. The method can also include the chatbot system classifying, based on the predicted output, the utterance as being associated with the particular class.Type: GrantFiled: November 30, 2021Date of Patent: June 25, 2024Assignee: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Patent number: 11972220Abstract: Techniques for using enhanced logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system and inputting the utterance into a machine-learning model including a series of network layers. A final network layer of the series of network layers can include a logit function. The machine-learning model can map a first probability for a resolvable class to a first logit value using the logit function. The machine-learning model can map a second probability for a unresolvable class to an enhanced logit value. The method can also include the chatbot system classifying the utterance as the resolvable class or the unresolvable class based on the first logit value and the enhanced logit value.Type: GrantFiled: November 29, 2021Date of Patent: April 30, 2024Assignee: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Publication number: 20240126999Abstract: Techniques for using logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system. The chatbot system can input the utterance into a machine-learning model including a set of binary classifiers. Each binary classifier of the set of binary classifiers can be associated with a modified logit function. The method can also include the machine-learning model using the modified logit function to generate a set of distance-based logit values for the utterance. The method can also include the machine-learning model applying an enhanced activation function to the set of distance-based logit values to generate a predicted output. The method can also include the chatbot system classifying, based on the predicted output, the utterance as being associated with the particular class.Type: ApplicationFiled: December 19, 2023Publication date: April 18, 2024Applicant: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Publication number: 20240062011Abstract: Techniques are disclosed herein for using named entity recognition to resolve entity expression while transforming natural language to a meaning representation language. In one aspect, a method includes accessing natural language text, predicting, by a first machine learning model, a class label for a token in the natural language text, predicting, by a second machine-learning model, operators for a meaning representation language and a value or value span for each attribute of the operators, in response to determining that the value or value span for a particular attribute matches the class label, converting a portion of the natural language text for the value or value span into a resolved format, and outputting syntax for the meaning representation language. The syntax comprises the operators with the portion of the natural language text for the value or value span in the resolved format.Type: ApplicationFiled: July 13, 2023Publication date: February 22, 2024Applicant: Oracle International CorporationInventors: Aashna Devang Kanuga, Cong Duy Vu Hoang, Mark Edward Johnson, Vasisht Raghavendra, Yuanxu Wu, Steve Wai-Chun Siu, Nitika Mathur, Gioacchino Tangari, Shubham Pawankumar Shah, Vanshika Sridharan, Zikai Li, Diego Andres Cornejo Barra, Stephen Andrew McRitchie, Christopher Mark Broadbent, Vishal Vishnoi, Srinivasa Phani Kumar Gadde, Poorya Zaremoodi, Thanh Long Duong, Bhagya Gayathri Hettige, Tuyen Quang Pham, Arash Shamaei, Thanh Tien Vu, Yakupitiyage Don Thanuja Samodhve Dharmasiri
-
Publication number: 20240061835Abstract: Systems and methods fine-tune a pretrained machine learning model. For a model having multiple layers, an initial set of configurations is identified, each configuration establishing layers to be frozen and layers to be fine-tuned. A configuration that is optimized with respect to one or more parameters is selected, establishing a set of fine-tuning layers and a set of frozen layers. An input for the model is provided to a remote system. An output of the set of frozen layers of the model, given the provided input, is received back and locally stored. The set of fine-tuning layers of the model is loaded from the remote system. The model is fine-tuned by retrieving the locally stored output of the set of frozen layers, and updating weights associated with the set of fine-tuning layers of the machine learning model.Type: ApplicationFiled: August 21, 2023Publication date: February 22, 2024Applicant: Oracle International CorporationInventors: Shivashankar Subramanian, Gioacchino Tangari, Thanh Tien Vu, Cong Duy Vu Hoang, Poorya Zaremoodi, Dalu Guo, Mark Edward Johnson, Thanh Long Duong
-
Publication number: 20240062112Abstract: Techniques are disclosed herein for adaptive training data augmentation to facilitate training named entity recognition (NER) models. Adaptive augmentation techniques are disclosed herein that take into consideration the distribution of different entity types within training data. The adaptive augmentation techniques generate adaptive numbers of augmented examples (e.g., utterances) based on the distribution of entities to make sure enough numbers of examples for minority class entities are generated during augmentation of the training data.Type: ApplicationFiled: August 16, 2023Publication date: February 22, 2024Applicant: Oracle International CorporationInventors: Omid Mohamad Nezami, Thanh Tien Vu, Budhaditya Saha, Shubham Pawankumar Shah
-
Publication number: 20240028963Abstract: An augmentation and feature caching subsystem is described for training AI/ML models. In one particular aspect, a method is provided that includes receiving data comprising training examples, one or more augmentation configuration hyperparameters and one or more feature extraction configuration hyperparameters; generating a first key based on one of the training examples and the one or more augmentation configuration hyperparameters; searching a first key-value storage based on the first key; obtaining one or more augmentations based on the search of the first key-value storage; applying the obtained one or more augmentations to the training examples to result in augmented training examples; generating a second key based on one of the augmented training examples and the one or more feature extraction configuration hyperparameters; searching a second key-value storage based on the second key; obtaining one or more features based on the search of the second key-value storage.Type: ApplicationFiled: July 11, 2023Publication date: January 25, 2024Applicant: Oracle International CorporationInventors: Vladislav Blinov, Vishal Vishnoi, Thanh Long Duong, Mark Edward Johnson, Xin Xu, Elias Luqman Jalaluddin, Ying Xu, Ahmed Ataallah Ataallah Abobakr, Umanga Bista, Thanh Tien Vu
-
Publication number: 20230325599Abstract: Techniques are provided for augmenting training data using gazetteers and perturbations to facilitate training named entity recognition models. The training data can be augmented by generating additional utterances from original utterances in the training data and combining the generated additional utterances with the original utterances to form the augmented training data. The additional utterances can be generated by replacing the named entities in the original utterances with different named entities and/or perturbed versions of the named entities in the original utterances selected from a gazetteer. Gazetteers of named entities can be generated from the training data and expanded by searching a knowledge base and/or perturbing the named entities therein. The named entity recognition model can be trained using the augmented training data.Type: ApplicationFiled: March 17, 2023Publication date: October 12, 2023Applicant: Oracle International CorporationInventors: Omid Mohamad Nezami, Shivashankar Subramanian, Thanh Tien Vu, Tuyen Quang Pham, Budhaditya Saha, Aashna Devang Kanuga, Shubham Pawankumar Shah
-
Publication number: 20230206125Abstract: Techniques are provided for improved training of a machine learning model using lexical dropout. A machine learning model and a training data set are accessed. The training data set can include sample utterances and corresponding labels. A dropout parameter is identified. The dropout parameter can indicate a likelihood for dropping out one or more feature vectors for tokens associated with respective entities during training of the machine learning model. The dropout parameter is applied to feature vectors for tokens associated with respective entities. The machine learning model is trained using the training data set and the dropout parameter to generate a trained machine learning model. The use of the trained the machine learning model is facilitated.Type: ApplicationFiled: December 22, 2022Publication date: June 29, 2023Applicant: Oracle International CorporationInventors: Tuyen Quang Pham, Cong Duy Vu Hoang, Thanh Tien Vu, Mark Edward Johnson, Thanh Long Duong
-
Publication number: 20230154455Abstract: Techniques are provided for improved training of a machine-learning model that includes multiple layers and is configured to process textual language input. The machine-learning model includes one or more blocks in which each block includes a multi-head self-attention network, a first connection for providing input to the multi-head self-attention network, and a second (residual) connection for providing the input to a normalization layer, bypassing the multi-head self-attention network. During training, the second connection is dropped out according to a dropout parameter. Additionally, or alternatively, an attention weight matrix is used for dropout by blocking diagonal entries in the attention weight matrix. As a result, the machine-learning model increasingly focuses on contextual information, which provides more accurate language processing results.Type: ApplicationFiled: November 16, 2022Publication date: May 18, 2023Applicant: Oracle International CorporationInventors: Thanh Tien Vu, Tuyen Quang Pham, Mark Edward Johnson, Thanh Long Duong
-
Publication number: 20230141853Abstract: Techniques disclosed herein relate generally to language detection. In one particular aspect, a method is provided that includes obtaining a sequence of n-grams of a textual unit; using an embedding layer to obtain an ordered plurality of embedding vectors for the sequence of n-grams; using a deep network to obtain an encoded vector that is based on the ordered plurality of embedding vectors; and using a classifier to obtain a language prediction for the textual unit that is based on the encoded vector. The deep network includes an attention mechanism, and using the embedding layer to obtain the ordered plurality of embedding vectors comprises, for each n-gram in the sequence of n-grams: obtaining hash values for the n-gram; based on the hash values, selecting component vectors from among the plurality of component vectors; and obtaining an embedding vector for the n-gram that is based on the component vectors.Type: ApplicationFiled: November 4, 2022Publication date: May 11, 2023Applicant: Oracle International CorporationInventors: Thanh Tien Vu, Poorya Zaremoodi, Duy Vu, Mark Edward Johnson, Thanh Long Duong, Xu Zhong, Vladislav Blinov, Cong Duy Vu Hoang, Yu-Heng Hong, Vinamr Goel, Philip Victor Ogren, Srinivasa Phani Kumar Gadde, Vishal Vishnoi
-
Publication number: 20230136965Abstract: In some aspects, a computer obtains a trained conditional random field (CRF) model comprising a set of model parameters learned from training data and stored in a transition matrix. Tag sequences, inconsistent with the tag sequence logic, are identified for the tags within the transition matrix. setting, within the transition matrix, a cost associated with transitioning between the pair of tags to be equal to a predefined hyperparameter value that penalizes the transitioning between the inconsistent pair of tags. The CRF model receives a string of text comprising one or more named entities. The CRF model inputs the string of text into the CRF model having the cost associated with the transitioning between the pair of tags set equal to the predefined hyperparameter value. The CRF model classifies the words within the string of text into different classes which might include the one or more named entities.Type: ApplicationFiled: October 31, 2022Publication date: May 4, 2023Applicant: Oracle International CorporationInventors: Thanh Tien Vu, Tuyen Quang Pham, Mark Edward Johnson, Thanh Long Duong, Aashna Devang Kanuga, Srinivasa Phani Kumar Gadde, Vishal Vishnoi
-
Publication number: 20230115321Abstract: Techniques are provided for customizing or fine-tuning a pre-trained version of a machine-learning model that includes multiple layers and is configured to process audio or textual language input. Each of the multiple layers is configured with a plurality of layer-specific pre-trained parameter values corresponding to a plurality of parameters, and each of the multiple layers is configured to implement multi-head attention. An incomplete subset of the multiple layers is identified for which corresponding layer-specific pre-trained parameter values are to be fine-tuned using a client data set. The machine-learning model is fine-tuned using the client data set to generate an updated version of the machine-learning model, where the layer-specific pre-trained parameter values configured for each layer of one of more of the multiple layers not included in the incomplete subset are frozen during the fine-tuning. Use of the updated version of the machine-learning model is facilitated.Type: ApplicationFiled: May 3, 2022Publication date: April 13, 2023Applicant: Oracle International CorporationInventors: Thanh Tien Vu, Tuyen Quang Pham, Omid Mohamad Nezami, Mark Edward Johnson, Thanh Long Duong, Cong Duy Vu Hoang
-
Publication number: 20230098783Abstract: Techniques are disclosed herein for focused training of language models and end-to-end hypertuning of the framework. In one aspect, a method is provided that includes obtaining a machine learning model pre-trained for language modeling, and post-training the machine learning model for various tasks to generate a focused machine learning model. The post-training includes: (i) training the machine learning model on an unlabeled set of training data pertaining to a task that the machine learning model was pre-trained for as part of the language modeling, and the unlabeled set of training data is obtained with respect to a target domain, a target task, or a target language, and (ii) training the machine learning model on a labeled set of training data that pertains to another task that is an auxiliary task related to a downstream task to be performed using the machine learning model or output from the machine learning model.Type: ApplicationFiled: September 23, 2022Publication date: March 30, 2023Applicant: Oracle International CorporationInventors: Poorya Zaremoodi, Cong Duy Vu Hoang, Duy Vu, Dai Hoang Tran, Budhaditya Saha, Nagaraj N. Bhat, Thanh Tien Vu, Tuyen Quang Pham, Adam Craig Pocock, Katherine Silverstein, Srinivasa Phani Kumar Gadde, Vishal Vishnoi, Mark Edward Johnson, Thanh Long Duong
-
Publication number: 20220171947Abstract: Techniques for using logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system. The chatbot system can input the utterance into a machine-learning model including a set of binary classifiers. Each binary classifier of the set of binary classifiers can be associated with a modified logit function. The method can also include the machine-learning model using the modified logit function to generate a set of distance-based logit values for the utterance. The method can also include the machine-learning model applying an enhanced activation function to the set of distance-based logit values to generate a predicted output. The method can also include the chatbot system classifying, based on the predicted output, the utterance as being associated with the particular class.Type: ApplicationFiled: November 30, 2021Publication date: June 2, 2022Applicant: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Publication number: 20220172021Abstract: Disclosed herein are techniques for addressing an overconfidence problem associated with machine learning models in chatbot systems. For each layer of a plurality of layers of a machine learning model, a distribution of confidence scores is generated for a plurality of predictions with respect to an input utterance. A prediction is determined for each layer of the machine learning model based on the distribution of confidence scores generated for the layer. Based on the predictions, an overall prediction of the machine learning model is determined. A subset of the plurality of layers are iteratively processed to identify a layer whose assigned prediction satisfies a criterion. A confidence score associated with the assigned prediction of the layer of the machine learning model is assigned as an overall confidence score to be associated with the overall prediction of the machine learning model.Type: ApplicationFiled: November 16, 2021Publication date: June 2, 2022Applicant: Oracle International CorporationInventors: Cong Duy Vu Hoang, Thanh Tien Vu, Poorya Zaremoodi, Ying Xu, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson
-
Publication number: 20220171946Abstract: Techniques for using enhanced logit values for classifying utterances and messages input to chatbot systems in natural language processing. A method can include a chatbot system receiving an utterance generated by a user interacting with the chatbot system and inputting the utterance into a machine-learning model including a series of network layers. A final network layer of the series of network layers can include a logit function. The machine-learning model can map a first probability for a resolvable class to a first logit value using the logit function. The machine-learning model can map a second probability for a unresolvable class to an enhanced logit value. The method can also include the chatbot system classifying the utterance as the resolvable class or the unresolvable class based on the first logit value and the enhanced logit value.Type: ApplicationFiled: November 29, 2021Publication date: June 2, 2022Applicant: Oracle International CorporationInventors: Ying Xu, Poorya Zaremoodi, Thanh Tien Vu, Cong Duy Vu Hoang, Vladislav Blinov, Yu-Heng Hong, Yakupitiyage Don Thanuja Samodhye Dharmasiri, Vishal Vishnoi, Elias Luqman Jalaluddin, Manish Parekh, Thanh Long Duong, Mark Edward Johnson