Patents by Inventor Thea Van Der Wijk

Thea Van Der Wijk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402374
    Abstract: The invention relates to a method for the detection of target components that comprise label particles, for example magnetic particles (1). The method includes (a) collecting the target components at a binding surface (12, 112, 512) of a carrier (11, 111, 211, 311, 411, 511); (b) directing an input light beam (L1, L1a, L1b) into the carrier such that it is totally internally reflected in an investigation region (13, 313a, 313b) at the binding surface (12, 112, 512); and (c) determining the amount of light of an output light beam (L2, L2a, L2b) that comprises at least some of the totally internally reflected light. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles (1) at the binding surface (12) and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface (12) from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: August 2, 2022
    Assignee: Siemens Healthineers Nederland B.V.
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina De Theije, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Patent number: 11243199
    Abstract: The invention relates to a carrier with a binding surface at which target components that comprise label particles, for example magnetic particles, can collect and optionally bind to specific capture elements. An input light beam (L1) is transmitted into the carrier and totally internally reflected at the binding surface. The amount of light in the output light beam (L2) and optionally also of fluorescence light emitted by target components at the binding surface is then detected by a light detector. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles at the binding surface and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 8, 2022
    Assignee: Siemens Healthineers Nederland B.V.
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina De Theije e/v Wijgergangs, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20210341554
    Abstract: The present invention relates to methods and (bio)sensor systems. Herein, magnetic fields are applied in order to transport magnetic particles laterally over a sensor surface with analyte specific probes. The methods of the invention allow the specific binding of magnetic particles to the sensor surface, while aspecific and unbound particles are removed.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: SIEMENS HEALTHINEERS NEDERLAND B.V.
    Inventors: Thea Van Der Wijk, Menno Willem Jose Prins, Richard Joseph Marinus Schroeders
  • Patent number: 10488408
    Abstract: The application relates to a method for detecting a target in a sample suspected of containing the target. The method comprises contacting the sample and a first binding molecule attached to a magnetic particle with a second binding molecule attached to a solid support. The first binding molecule is capable of binding to the second binding molecule, and the target is capable of interfering with this binding. Magnetic force is applied to bring the magnetic particle into close proximity with the solid support. The number of magnetic particles bound to the solid support is detected.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 26, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thea Van Der Wijk, Eduard Gerard Marie Pelssers, Jessica Amadio
  • Patent number: 10092903
    Abstract: The present invention discloses microfluidic devices with a valve-like structure (3), through which magnetic particles can be transported with minimal transport of fluids. This allows sequential processing of the magnetic particles.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 9, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Menno Willem Jose Prins, Joost Hubert Maas, Albert Hendrik Jan Immink, Dirkjan Bernhard Van Dam, Maatje Koets, Michel J. M. Bruyninckx, Thea Van Der Wijk, Marius Iosif Boamfa, Remco Den Dulk
  • Patent number: 9778254
    Abstract: A system and method wherein components of a reagent such as labeled antibodies are separated from a biologically active sensor surface by depositing the reagent on a carrier surface distinct from a sensor surface in a detection region. The present device provides a short, well-defined and controlled, pre-incubation time between the particles of interest in the sample fluid and the reagent, thereby increasing the reproducibility by providing all components in one detection region such as a detection chamber.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 3, 2017
    Assignees: KONINKLIJKE PHILIPS N.V., CONCATENO UK LIMITED
    Inventors: Femke Karina De Theije, Thea Van Der Wijk, Albert Hendrik Jan Immink, Eduard Gerard Marie Pelssers, Wilhelmina Maria Hardeman, Sandra Marlin, Gordon Thomas Jowett
  • Patent number: 9658219
    Abstract: A microelectronic sensor device for the detection of target components with label or magnetic particles includes a carrier with a binding surface at which target components can collect and optionally bind to specific capture elements. An input light beam is transmitted into the carrier and totally internally reflected at the binding surface. The amount of light in the output light beam is detected by a light detector. Evanescent light generated during the total internal reflection is affected by target components and/or label particles at the binding surface and will be missing in the output light beam. This is used to determine the amount of target components at the binding surface from the amount of light in the output light beam. A magnetic field generator is optionally used to generate a magnetic field at the binding surface by which magnetic label particles can be manipulated, such as attracted or repelled.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 23, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina De Theije, Thea Van Der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Patent number: 9128084
    Abstract: A detection system (100) and a sensor chip (1) for detecting target molecules, and thus corresponding analytes in a sample is described. Typically the detection system (100) includes a sensor chip (1). The sensor chip (1) comprises on its detection surface (33) a dissolvable reagent layer (5). When the dissolvable reagent layer (5) is in contact with sample fluid, free reagent is generated, assisting in the interaction between a label and target molecules, thus allowing for label based detection. The sample thereby is exposed to mobile reagents in a burst. The reagent layer may contain an enzyme allowing enzymatic assays.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 8, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Menno Willem Jose Prins, Thea Van Der Wijk
  • Publication number: 20150241416
    Abstract: The invention relates to a method for the detection of target components that comprise label particles, for example magnetic particles (1). The method includes (a) collecting the target components at a binding surface (12, 112, 512) of a carrier (11, 111, 211, 311, 411, 511); (b) directing an input light beam (L1, L1a, L1b) into the carrier such that it is totally internally reflected in an investigation region (13, 313a, 313b) at the binding surface (12, 112, 512); and (c) determining the amount of light of an output light beam (L2, L2a, L2b) that comprises at least some of the totally internally reflected light. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles (1) at the binding surface (12) and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface (12) from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina DE THEIJE e/v WIJGERGANGS, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20150226733
    Abstract: The invention relates to a carrier with a binding surface at which target components that comprise label particles, for example magnetic particles, can collect and optionally bind to specific capture elements. An input light beam (L1) is transmitted into the carrier and totally internally reflected at the binding surface. The amount of light in the output light beam (L2) and optionally also of fluorescence light emitted by target components at the binding surface is then detected by a light detector. Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles at the binding surface and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Application
    Filed: April 15, 2015
    Publication date: August 13, 2015
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina DE THEIJE e/v WIJGERGANGS, Thea van der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20110050215
    Abstract: A magnetic system for biosensors or a biosystem, wherein magnetic particles that interact with molecules are brought into a magnetic field, in order to be influenced via magnetic attraction or repulsion forces. The external magnetic field is varied by mechanically moving the magnetic poles of at least one magnetic relative to the sensor or at least its surface to allow the magnetic force to be switched between effective attraction towards the sensor surface and effective repulsion away from the sensor surface.
    Type: Application
    Filed: December 7, 2007
    Publication date: March 3, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlmann, Albert Hendrik Jan Immink, Jeroen Hans Jeroen, Thea Van Der Wijk, Femke Karina De Theije
  • Publication number: 20100297780
    Abstract: A system and method is described wherein components of the reagent (4), e.g. labelled antibodies, are separated from the biologically active sensor surface (5) by depositing the reagent (4) on a carrier surface (3) distinct from the sensor surface (5) in the detection region (2), e.g. detection chamber. In this way, a high assay reproducibility is obtained. By allowing a short, well-defined and controlled, pre-incubation time between the particles of interest, e.g. drugs, in the sample fluid (20) and the reagent (4), the reproducibility will be increased, whereas the speed of the assay is guaranteed by having all components in one detection region (2), e.g. detection chamber.
    Type: Application
    Filed: July 18, 2008
    Publication date: November 25, 2010
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Femke Karina De Theije, Thea Van Der Wijk, Albert Hendrik Jan Immink, Eduard Gerard Marie Pelssers, Wilhelmina Maria Hardeman, Sandra Marlin, Gordon Thomas Jowett
  • Publication number: 20100273142
    Abstract: The present invention discloses microfluidic devices with a valve-like structure (3), through which magnetic particles can be transported with minimal transport of fluids. This allows sequential processing of the magnetic particles.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 28, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Menno Willem Jose Prins, Joost Hubert Maas, Albert Hendrik Jan Immink, Dirkjan Bernhard Van Dam, Maatje Koets, Michel J.M. Bruyninckx, Thea Van Der Wijk, Marius losif Boamfa, Remco Den Dulk
  • Publication number: 20100253323
    Abstract: Detecting magnetized or magnetizable target components in a fluid containing the magnetized or magnetizable target components amongst other magnetized or magnetizable components, uses a magnetic field generator (M1, 28) to attract the magnetized or magnetizable components towards a binding surface. A magnetic field controller (C1) applies the magnetic field to concentrate the magnetized or magnetizable components in columns on the binding surface, subsequently reduces the magnetic field to enable the columns to collapse, to allow more components to reach the binding surface, and reapplies the magnetic field so as to cause other components to be pulled off the binding surface to reform columns based on the bound target components. A surface sensitive sensor (S1, 26, 29) detects the bound magnetized or magnetizable target components.
    Type: Application
    Filed: December 4, 2008
    Publication date: October 7, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Femke Karina De Theije, Dominique Maria Bruls, Thea Van Der Wijk, Coen Adrianus Verschuren, Albert Hendrik Jan Immink
  • Publication number: 20100092996
    Abstract: The invention relates to a microelectronic sensor device for the detection of target components that comprise label particles, for example magnetic particles (1). The sensor device comprises a carrier (11) with a binding surface (12) at which target components can collect and optionally bind to specific capture elements. An input light beam (L1) is transmitted into the carrier and totally internally reflected at the binding surface (12). The amount of light in the output light beam (L2) and optionally also of fluorescence light emitted by target components at the binding surface is then detected by a light detector (31). Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles (1) at the binding surface (12) and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface (12) from the amount of light in the output light beam (L2, L2a, L2b).
    Type: Application
    Filed: December 10, 2007
    Publication date: April 15, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Coen Adrianus Verschuren, Dominique Maria Bruls, Albert Hendrik Jan Immink, Femke Karina De Theije, Thea Van Der Wijk, Alexander Marc Van Der Lee, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20100009456
    Abstract: A detection system (100) and a sensor chip (1) for detecting target molecules, and thus corresponding analytes in a sample is described. Typically the detection system (100) includes a sensor chip (1). The sensor chip (1) comprises on its detection surface (33) a dissolvable reagent layer (5). When the dissolvable reagent layer (5) is in contact with sample fluid, free reagent is generated, assisting in the interaction between a label and target molecules, thus allowing for label based detection. The sample thereby is exposed to mobile reagents in a burst. The reagent layer may contain an enzyme allowing enzymatic assays.
    Type: Application
    Filed: October 10, 2007
    Publication date: January 14, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Menno Willem Jose Prins, Thea Van Der Wijk
  • Publication number: 20090170212
    Abstract: The present invention relates to methods and (bio)sensor systems. Herein, magnetic fields are applied in order to transport magnetic particles laterally over a sensor surface with analyte specific probes. The methods of the invention allow the specific binding of magnetic particles to the sensor surface, while aspecific and unbound particles are removed.
    Type: Application
    Filed: May 7, 2007
    Publication date: July 2, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Thea Van Der Wijk, Menno Willem Jose Prins, Richard Joseph Marinus Schroeders
  • Publication number: 20090117670
    Abstract: The application relates to a method for detecting a target in a sample suspected of containing the target. The method comprises contacting the sample and a first binding molecule attached to a magnetic particle with a second binding molecule attached to a solid support. The first binding molecule is capable of binding to the second binding molecule, and the target is capable of interfering with this binding. Magnetic force is applied to bring the magnetic particle into close proximity with the solid support. The number of magnetic particles bound to the solid support is detected.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 7, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Thea Van Der Wijk, Eduard Gerard Marie Pelssers, Jessica Amadio