Patents by Inventor Theo T. Nikiforov

Theo T. Nikiforov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040033531
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: June 27, 2003
    Publication date: February 19, 2004
    Applicant: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Patent number: 6689565
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: February 10, 2004
    Assignee: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Publication number: 20030215862
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3′-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Application
    Filed: April 14, 2003
    Publication date: November 20, 2003
    Applicant: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Patent number: 6632655
    Abstract: Arrays of flowable or fixed particle sets are used in microfluidic systems for performing assays and modifying hydrodynamic flow. Also provided are assays utilizing flowable or fixed particle sets within a microfluidic system, as well as kits, apparatus and integrated systems comprising arrays and array members.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: October 14, 2003
    Assignee: Caliper Technologies Corp.
    Inventors: Tammy Burd Mehta, Anne R. Kopf-Sill, J. Wallace Parce, Andrea W. Chow, Luc J. Bousse, Michael R. Knapp, Theo T. Nikiforov, Steve Gallagher
  • Publication number: 20030175815
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: March 26, 2003
    Publication date: September 18, 2003
    Applicant: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Patent number: 6613513
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3′-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: September 2, 2003
    Assignee: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Publication number: 20020197619
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: January 24, 2002
    Publication date: December 26, 2002
    Applicant: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Patent number: 6498005
    Abstract: The present invention provides a method of assaying an enzyme-mediated coupling reaction between a first and a second reactant. The method includes contacting the first reactant with the second reactant in the presence of the enzyme. The second reactant includes a thiol derivative to yield a first product including a thiol derivative. The thiol derivative is then detected in the first product.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: December 24, 2002
    Assignee: Caliper Technologies Corp.
    Inventors: Theo T. Nikiforov, Sang Jeong
  • Publication number: 20020192719
    Abstract: The present invention provides a method of assaying an enzyme-mediated coupling reaction between a first and a second reactant. The method comprises contacting the first reactant with the second reactant in the presence of the enzyme. The second reactant comprises a thiol derivative to yield a first product comprising a thiol derivative. The thiol derivative is then detected in the first product.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 19, 2002
    Applicant: Caliper Technologies Corp.
    Inventors: Theo T. Nikiforov, Sang Jeong
  • Patent number: 6471841
    Abstract: The present invention generally provides methods for enhancing transport and direction of materials in fluidic systems, which systems utilize electroosmotic (E/O) flow systems, to affect that transport and direction. The methods generally comprise providing an effective concentration of at least one zwitterionic compound in the fluid containing the material that is to be transported or directed.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: October 29, 2002
    Assignee: Caliper Technologies Corp.
    Inventors: Theo T. Nikiforov, Sang Jeong
  • Patent number: 6472141
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: October 29, 2002
    Assignee: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Publication number: 20020146703
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: May 24, 2001
    Publication date: October 10, 2002
    Inventor: Theo T. Nikiforov
  • Publication number: 20020127591
    Abstract: Intracellular binding reactions, and particularly DNA/DNA binding protein reactions are detected in situ, using intracellular fluorescence polarization detection. The methods comprise providing a biological cell having at least a first component of a binding reaction disposed therein. The cell is contacted with a second component of the binding reaction whereby the second component is internalized within the biological cell. At least one of the first and second components has a fluorescent label. The amount of binding between the first and second components within the cell is determined by measuring a level of polarized and/or depolarized fluorescence emitted from within the biological cell.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 12, 2002
    Applicant: Caliper Technologies Corp.
    Inventors: H. Garrett Wada, Javier A. Farinas, Theo T. Nikiforov
  • Patent number: 6436646
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 20, 2002
    Assignee: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov
  • Publication number: 20020076697
    Abstract: Methods, systems, kits for carrying out a wide variety of different assays that comprise providing a first reagent mixture which comprises a first reagent having a fluorescent label. A second reagent is introduced into the first reagent mixture to produce a second reagent mixture, where the second reagent reacts with the first reagent to produce a fluorescently labeled product having a substantially different charge than the first reagent. A polyion is introduced into at least one of the first and second reagent mixtures, and the fluorescent polarization in the second reagent mixture relative to the first reagent mixture is determined, this fluorescent polarization being indicative of the rate or extent of the reaction.
    Type: Application
    Filed: May 11, 2000
    Publication date: June 20, 2002
    Inventor: THEO T. NIKIFOROV
  • Patent number: 6379884
    Abstract: Intracellular binding reactions, and particularly DNA/DNA binding protein reactions are detected in situ, using intracellular fluorescence polarization detection. The methods comprise providing a biological cell having at least a first component of a binding reaction disposed therein. The cell is contacted with a second component of the binding reaction whereby the second component is internalized within the biological cell. At least one of the first and second components has a fluorescent label. The amount of binding between the first and second components within the cell is determined by measuring a level of polarized and/or depolarized fluorescence emitted from within the biological cell.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: April 30, 2002
    Assignee: Caliper Technologies Corp.
    Inventors: H. Garrett Wada, Javier A. Farinas, Theo T. Nikiforov
  • Publication number: 20020048768
    Abstract: The present invention is generally directed to microfluidic systems and methods of using such systems in the determination of the nucleotide sequence of target nucleic acid sequences (referred to herein as the “target”). In particular, the present invention provides methods and systems for determining the relative positions within a target nucleic acid sequence that are occupied by a given nucleotide, e.g., A, T, G or C, by separating mixtures of nested sets of fragments of the target nucleic acid, which sets each include fragments that terminate in a different given nucleotide.
    Type: Application
    Filed: September 13, 2001
    Publication date: April 25, 2002
    Inventor: Theo T. Nikiforov
  • Publication number: 20020037520
    Abstract: Methods, systems and assays are provided for FP detection of nucleic acid hybridization.
    Type: Application
    Filed: May 11, 2001
    Publication date: March 28, 2002
    Inventors: Theo T. Nikiforov, Sang Jeong
  • Publication number: 20020009711
    Abstract: Intracellular binding reactions, and particularly DNA/DNA binding protein reactions are detected in situ, using intracellular fluorescence polarization detection. The methods comprise providing a biological cell having at least a first component of a binding reaction disposed therein. The cell is contacted with a second component of the binding reaction whereby the second component is internalized within the biological cell. At least one of the first and second components has a fluorescent label. The amount of binding between the first and second components within the cell is determined by measuring a level of polarized and/or depolarized fluorescence emitted from within the biological cell.
    Type: Application
    Filed: December 28, 2000
    Publication date: January 24, 2002
    Inventors: H. Garrett Wada, Javier A. Farinas, Theo T. Nikiforov
  • Patent number: 6316201
    Abstract: The present invention is generally directed to microfluidic systems and methods of using such systems in the determination of the nucleotide sequence of target nucleic acid sequences (referred to herein as the “target”). In particular, the present invention provides methods and systems for determining the relative positions within a target nucleic acid sequence that are occupied by a given nucleotide, e.g., A, T, G or C, by separating mixtures of nested sets of fragments of the target nucleic acid, which sets each include fragments that terminate in a different given nucleotide.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: November 13, 2001
    Assignee: Caliper Technologies Corp.
    Inventor: Theo T. Nikiforov