Patents by Inventor Theodore A. Betley

Theodore A. Betley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9966622
    Abstract: The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 8, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Brian Huskinson, Michael Marshak, Michael J. Aziz, Roy G. Gordon, Theodore A. Betley, Alan Aspuru-Guzik, Suleyman Er, Changwon Suh
  • Publication number: 20160043423
    Abstract: The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 11, 2016
    Inventors: Brian HUSKINSON, Michael MARSHAK, Michael J. AZIZ, Roy G. GORDON, Theodore A. BETLEY, Alan ASPURU-GUZIK, Suleyman ER, Changwon SUH
  • Publication number: 20150243991
    Abstract: The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., grid-scale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
    Type: Application
    Filed: September 26, 2013
    Publication date: August 27, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Brian Huskinson, Michael Marshak, Michael J. Aziz, Roy G. Gordon, Theodore A. Betley, Alan Aspuru-Guzik, Suleyman Er, Changwon Suh
  • Patent number: 6649801
    Abstract: This invention provides an anionic borate ligand, and its synthesis. Zwitterionic complexes formed by the ligand and a metal, and Group 9 and 10 metals in particular, are described. Uses of the complexes in stoichiometric and catalytic reaction chemistry are also provided.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: November 18, 2003
    Assignee: California Institute of Technology
    Inventors: Jonas C. Peters, John C. Thomas, Connie Lu, Theodore A. Betley
  • Publication number: 20030050493
    Abstract: This invention provides an anionic borate ligand, and its synthesis. Zwitterionic complexes formed by the ligand and a metal, and Group 9 and 10 metals in particular, are described. Uses of the complexes in stoichiometric and catalytic reaction chemistry are also provided.
    Type: Application
    Filed: March 28, 2002
    Publication date: March 13, 2003
    Inventors: Jonas C. Peters, John C. Thomas, Connie Lu, Theodore A. Betley