Patents by Inventor Theodore D. Moustakas

Theodore D. Moustakas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11646395
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 9, 2023
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 11502220
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: November 15, 2022
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Publication number: 20200287084
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Application
    Filed: December 20, 2019
    Publication date: September 10, 2020
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 10593830
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 17, 2020
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 10535801
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: January 14, 2020
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 10361343
    Abstract: The invention provides ultraviolet (UV) light-emitting diodes (LEDs). The UV LEDs can comprise abase layer including p-type SiC or p-type AlGaN, an active layer, and an n-AlGaN layer, wherein the active layer is disposed between the base layer and the n-AlGaN layer. In some embodiments, the absorption losses in p-SiC can be decreased or prevented by incorporating a conductive AlGaN Distributed Bragg Reflector (DBR) between the p-type SiC layer and the active layer. In some embodiments, the n-AlGaN layer can be textured to increase the extraction efficiency (EE). In some embodiments, the external quantum efficiency of the LEDs can be 20-30% or more.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: July 23, 2019
    Assignee: Trustees of Boston University
    Inventors: Gordon C. Brummer, Denis M. Nothern, Theodore D. Moustakas
  • Patent number: 9780254
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: October 3, 2017
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Publication number: 20170200865
    Abstract: The invention provides ultraviolet (UV) light-emitting diodes (LEDs). The UV LEDs can comprise abase layer including p-type SiC or p-type AlGaN, an active layer, and an n-AlGaN layer, wherein the active layer is disposed between the base layer and the n-AlGaN layer. In some embodiments, the absorption losses in p-SiC can be decreased or prevented by incorporating a conductive AlGaN Distributed Bragg Reflector (DBR) between the p-type SiC layer and the active layer. In some embodiments, the n-AlGaN layer can be textured to increase the extraction efficiency (EE). In some embodiments, the external quantum efficiency of the LEDs can be 20-30% or more.
    Type: Application
    Filed: July 2, 2015
    Publication date: July 13, 2017
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Gordon C. BRUMMER, Denis M. NOTHERN, Theodore D. MOUSTAKAS
  • Patent number: 9627580
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: April 18, 2017
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Publication number: 20160211411
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Application
    Filed: April 8, 2015
    Publication date: July 21, 2016
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 9318652
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: April 19, 2016
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 8987755
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: March 24, 2015
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Patent number: 8723189
    Abstract: Semiconductor structures involving multiple quantum wells provide increased efficiency of UV and visible light emitting diodes (LEDs) and other emitter devices, particularly at high driving current. LEDs made with the new designs have reduced efficiency droop under high current injection and increased overall external quantum efficiency. The active region of the devices includes separation layers configured between the well layers, the one or more separation regions being configured to have a first mode to act as one or more barrier regions separating a plurality of carriers in a quantum confined mode in each of the quantum wells being provided on each side of the one or more separation layers and a second mode to cause spreading of the plurality of carriers across each of the quantum wells to increase an overlap integral of all of the plurality of carriers. The devices and methods of the invention provide improved efficiency for solid state lighting, including high efficiency ultraviolet LEDs.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: May 13, 2014
    Assignee: Trustees of Boston University
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Publication number: 20140103289
    Abstract: A method of growing an AlGaN semiconductor material utilizes an excess of Ga above the stoichiometric amount typically used. The excess Ga results in the formation of band structure potential fluctuations that improve the efficiency of radiative recombination and increase light generation of optoelectronic devices, in particular ultraviolet light emitting diodes, made using the method. Several improvements in UV LED design and performance are also provided for use together with the excess Ga growth method. Devices made with the method can be used for water purification, surface sterilization, communications, and data storage and retrieval.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 17, 2014
    Inventors: Yitao Liao, Theodore D. Moustakas
  • Publication number: 20140061861
    Abstract: Films of III-nitride for semiconductor device growth are planarized using an etch-back method. The method includes coating a III-nitride surface having surface roughness features in the micron range with a sacrificial planarization material such as an appropriately chosen photoresist. The sacrificial planarization material is then etched together with the III-nitride roughness features using dry etch methods such as inductively coupled plasma reactive ion etching. By closely matching the etch rates of the sacrificial planarization material and the III-nitride material, a planarized III-nitride surface is achieved. The etch-back process together with a high temperature annealing process yields a planarized III-nitride surface with surface roughness features reduced to the nm range. Planarized III-nitride, e.g., GaN, substrates and devices containing them are also provided.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Inventors: Theodore D. Moustakas, Adrian D. Williams
  • Patent number: 8592800
    Abstract: A semiconductor emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: November 26, 2013
    Assignee: Trustees of Boston University
    Inventors: Theodore D. Moustakas, Adam Moldawer, Anirban Bhattacharyya, Joshua Abell
  • Patent number: 8257987
    Abstract: Films of III-nitride for semiconductor device growth are planarized using an etch-back method. The method includes coating a III-nitride surface having surface roughness features in the micron range with a sacrificial planarization material such as an appropriately chose photoresist. The sacrificial planarization material is then etched together with the III-nitride roughness features using dry etch methods such as inductively coupled plasma reactive ion etching. By closely matching the etch rates of the sacrificial planarization material and the III-nitride material, a planarized III-nitride surface is achieved. The etch-back process together with a high temperature annealing process yields a planarize III-nitride surface with surface roughness features reduced to the nm range. Planarized III-nitride, e.g., GaN, substrates and devices containing them are also provided.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: September 4, 2012
    Assignee: Trustees of Boston University
    Inventors: Theodore D. Moustakas, Adrian D. Williams
  • Patent number: 8247843
    Abstract: An etched grooved GaN-based permeable-base transistor structure is disclosed, along with a method for fabrication of same.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: August 21, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Liberty L Gunter, Kanin Chu, Charles R Eddy, Jr., Theodore D Moustakas, Enrico Bellotti
  • Patent number: 8237175
    Abstract: A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 7, 2012
    Assignee: The Trustees of Boston University
    Inventors: Theodore D. Moustakas, Jasper S. Cabalu
  • Publication number: 20120058586
    Abstract: A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 8, 2012
    Inventors: Theodore D. Moustakas, Jasper S. Cabalu