Patents by Inventor Theodore F. Baumann

Theodore F. Baumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200197892
    Abstract: A metal boride aerogel includes a three-dimensional aerogel structure comprising metal boride particles having an average diameter of less than one micron. A method is disclosed for forming a metal boride aerogel including dispersing boron nanoparticles in a solution of a metal salt, forming a boron-loaded metal oxide precursor gel using the dispersed boron nanoparticles in the solution of the metal salt, drying the boron-loaded metal oxide precursor gel to form a boron-loaded metal oxide precursor aerogel, and heating the boron-loaded metal oxide precursor aerogel to form a metal boride aerogel. The metal boride aerogel is essentially free of metal oxide.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joshua Kuntz
  • Patent number: 10633255
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 28, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus Worsley, Monika M. Biener, Maira Raquel Ceron Hernandez
  • Publication number: 20200024465
    Abstract: According to one embodiment, a method includes forming a structure by printing an ink, the ink including a glass-forming material, and heat treating the formed structure for converting the glass-forming material to glass. According to another embodiment, an ink composition includes a glass-forming material and a solvent.
    Type: Application
    Filed: December 6, 2018
    Publication date: January 23, 2020
    Inventors: Rebecca Dylla-Spears, Theodore F. Baumann, Eric B. Duoss, Joshua D. Kuntz, Robin Miles, Du Nguyen, Christopher Spadaccini, Tayyab I. Suratwala, Timothy Dexter Yee, Cheng Zhu, Cameron David Meyers, Nikola Dudukovic, Tyler Fears, Fang Qian, Koroush Sasan, Joel Destino
  • Patent number: 10399054
    Abstract: Disclosed here is a composition comprising a nitrogen-doped carbon aerogel, wherein the nitrogen-doped carbon aerogel comprises a polymerization product of formaldehyde and at least one nitrogen-containing resorcinol analog. Also disclosed is a supercapacitor comprising the nitrogen-doped carbon aerogel.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 3, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Elizabeth Montalvo, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Eric W. Reed, Marcus A. Worsley
  • Patent number: 10196270
    Abstract: In one embodiment, a method includes creating a three-dimensional, carbon-containing structure using an additive manufacturing technique and converting the three-dimensional, carbon-containing structure to a substantially pure carbon structure. Moreover, the substantially pure carbon structure has an average feature diameter of less than about 100 nm. In another embodiment, a product includes a substantially pure carbon structure having an average feature diameter of less than about 100 nm. In yet another embodiment, a product includes an aerogel having inner channels corresponding to outer walls of a three-dimensional printed template around which the aerogel was formed. In addition, the inner channels have an average feature diameter of less than about 100 nm.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: February 5, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Theodore F. Baumann, Juergen Biener, Swetha Chandrasekaran, James S. Oakdale, Marcus A. Worsley
  • Publication number: 20180345598
    Abstract: Making a carbon aerogel involves 3-D printing an ink to make a printed part, removing the solvent from the printed part, and carbonizing the printed part (with the solvent removed) to make the aerogel. The ink is based on a solution of a resorcinol-formaldehyde resin (RF resin), water, and an organic thickener. Advantageously, the RF resin contains an acid catalyst, which tends to produce carbon aerogels with higher surface areas upon activation than those produced from methods involving an ink composition containing a base catalyzed resin.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: Swetha Chandrasekaran, Theodore F. Baumann, Marcus A. Worsley
  • Patent number: 10106418
    Abstract: Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: October 23, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Pauzauskie, Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Juergen Biener
  • Patent number: 10109845
    Abstract: Provided here is a method for making a graphene-supported metal oxide monolith, comprising: providing a graphene aerogel monolith; immersing said graphene aerogel monolith in a solution comprising at least one metal salt to form a mixture; curing said mixture to obtain a gel; optionally, heating said gel to obtain a graphene-supported metal oxide monolith.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: October 23, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Patent number: 10014090
    Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Patent number: 10008338
    Abstract: Disclosed here is a method for increasing the hydrophilicity of a carbon aerogel, comprising heating the carbon aerogels under air or a gas having a higher concentration of oxygen than air at a temperature of about 200°-500° C. to obtain an activated carbon aerogel. Also disclosed include an activated carbon aerogel obtained by the method, an electrode comprising the activated carbon aerogel, and a supercapacitor or capacitive deionization device comprising the electrode.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: June 26, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael Stadermann, Theodore F. Baumann, Alexander E. Gash, Alex P. Parra
  • Publication number: 20180118574
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 3, 2018
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus Worsley, Monika M. Biener, Maira Raquel Ceron Hernandez
  • Publication number: 20180015436
    Abstract: In one embodiment, a method includes acquiring a three-dimensional printed template created using an additive manufacturing technique, infilling the template with an aerogel precursor solution, allowing formation of a sol-gel, and converting the sol-gel to an aerogel. In another embodiment, a product includes an aerogel having inner channels corresponding to outer walls of a three-dimensional printed template around which the aerogel was formed.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: Swetha Chandrasekaran, Theodore F. Baumann, Juergen Biener, Patrick Campbell, James S. Oakdale, Marcus A. Worsley
  • Publication number: 20180016145
    Abstract: In one embodiment, a method includes creating a three-dimensional, carbon-containing structure using an additive manufacturing technique and converting the three-dimensional, carbon-containing structure to a substantially pure carbon structure. Moreover, the substantially pure carbon structure has an average feature diameter of less than about 100 nm. In another embodiment, a product includes a substantially pure carbon structure having an average feature diameter of less than about 100 nm. In yet another embodiment, a product includes an aerogel having inner channels corresponding to outer walls of a three-dimensional printed template around which the aerogel was formed. In addition, the inner channels have an average feature diameter of less than about 100 nm.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: Patrick Campbell, Theodore F. Baumann, Juergen Biener, Swetha Chandrasekaran, James S. Oakdale, Marcus A. Worsley
  • Patent number: 9870871
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: January 16, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus A. Worsley, Monika M. Biener, Maira Raquel Cerón Hernández
  • Patent number: 9852824
    Abstract: In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In one approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 26, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Tammy Y. Olson, Joshua D. Kuntz, Klint A. Rose
  • Publication number: 20170304795
    Abstract: Disclosed here is a composition comprising a nitrogen-doped carbon aerogel, wherein the nitrogen-doped carbon aerogel comprises a polymerization product of formaldehyde and at least one nitrogen-containing resorcinol analog. Also disclosed is a supercapacitor comprising the nitrogen-doped carbon aerogel.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 26, 2017
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Patrick Campbell, Elizabeth Montalvo, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Eric W. Reed, Marcus A. Worsley
  • Patent number: 9793026
    Abstract: Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 17, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Sergei O. Kucheyev, Theodore F. Baumann, Joshua D. Kuntz, Joe H. Satcher, Jr., Alex V. Hamza
  • Patent number: 9776156
    Abstract: Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: October 3, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Elizabeth Montalvo, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Eric W. Reed, Marcus A. Worsley
  • Publication number: 20170200566
    Abstract: Disclosed here is a method for increasing the hydrophilicity of a carbon aerogel, comprising heating the carbon aerogels under air or a gas having a higher concentration of oxygen than air at a temperature of about 200°-500° C. to obtain an activated carbon aerogel. Also disclosed include an activated carbon aerogel obtained by the method, an electrode comprising the activated carbon aerogel, and a supercapacitor or capacitive deionization device comprising the electrode.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Michael Stadermann, Theodore F. Baumann, Alexander E. Gash, Alex P. Parra
  • Patent number: RE46771
    Abstract: A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: April 3, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Michael Stadermann