Patents by Inventor Theodore F. Ciszek

Theodore F. Ciszek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9580327
    Abstract: Apparatus and methods for consolidating granular silicon and determining trace elements content of the consolidated silicon are disclosed. Silicon granules are placed in a vessel, and a silicon slug of known purity is embedded at least partially in the granules. The slug is preheated to a temperature sufficient to couple with an induction heater. As the silicon slug melts, silicon granules adjacent the molten silicon also melt. The vessel passes through an induction coil to successively inductively heat and melt regions of the silicon granules from the leading end to the trailing end with each region solidifying as the molten silicon exits the induction coil to provide a multicrystalline silicon ingot. The multicrystalline silicon ingot is sliced into wafers, which are analyzed by low-temperature Fourier transform infrared spectroscopy to determine levels of trace elements in the ingot.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 28, 2017
    Assignee: REC Silicon Inc
    Inventors: Sefa Yilmaz, Theodore F. Ciszek, Matthew J. Miller, Stein Julsrud
  • Publication number: 20150225246
    Abstract: Apparatus and methods for consolidating granular silicon and determining trace elements content of the consolidated silicon are disclosed. Silicon granules are placed in a vessel, and a silicon slug of known purity is embedded at least partially in the granules. The slug is preheated to a temperature sufficient to couple with an induction heater. As the silicon slug melts, silicon granules adjacent the molten silicon also melt. The vessel passes through an induction coil to successively inductively heat and melt regions of the silicon granules from the leading end to the trailing end with each region solidifying as the molten silicon exits the induction coil to provide a multicrystalline silicon ingot. The multicrystalline silicon ingot is sliced into wafers, which are analyzed by low-temperature Fourier transform infrared spectroscopy to determine levels of trace elements in the ingot.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 13, 2015
    Inventors: Sefa Yilmaz, Theodore F. Ciszek, Matthew J. Miller, Stein Julsrud
  • Patent number: 6984263
    Abstract: In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: January 10, 2006
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Publication number: 20040200408
    Abstract: In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.
    Type: Application
    Filed: April 29, 2004
    Publication date: October 14, 2004
    Inventors: Tihu Wang, Theodore F Ciszek
  • Patent number: 6712908
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 30, 2004
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Publication number: 20030019429
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Application
    Filed: September 13, 2002
    Publication date: January 30, 2003
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 6468886
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: October 22, 2002
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Publication number: 20020022088
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Application
    Filed: August 28, 2001
    Publication date: February 21, 2002
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 6281098
    Abstract: A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: August 28, 2001
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 5785769
    Abstract: A substrate for a photovoltaic device wherein the substrate is the base upon which photosensitive material is to be grown and the substrate comprises an alloy having boron in a range from 0.1 atomic % of the alloy to 1.3 atomic % of the alloy and the substrate has a resistivity less than 3.times.10.sup.-3 ohm-cm.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: July 28, 1998
    Assignee: Midwest Research Institute
    Inventor: Theodore F. Ciszek
  • Patent number: 5544616
    Abstract: A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 3.times.10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution of Si in a Cu/Al solvent at about 20 to about 40 at. % Si at a temperature range of about 850.degree. to about 1100.degree. C. in an inert gas; immersing or partially immersing a substrate in the saturated liquid solution; super saturating the solution by lowering the temperature of the saturated solution; holding the substrate in the saturated solution for a period of time sufficient to cause Si to precipitate out of solution and form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: August 13, 1996
    Assignee: Midwest Research Institute
    Inventors: Theodore F. Ciszek, Tihu Wang
  • Patent number: 5401331
    Abstract: A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.
    Type: Grant
    Filed: September 7, 1993
    Date of Patent: March 28, 1995
    Assignee: Midwest Research Institute
    Inventor: Theodore F. Ciszek
  • Patent number: 5314571
    Abstract: A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 5X10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution melt of Si in Cu at about 16% to about 90% wt. Si at a temperature range of about 800.degree. C. to about 1400.degree. C. in an inert gas; immersing a substrate in the saturated solution melt; supersaturating the solution by lowering the temperature of the saturated solution melt and holding the substrate immersed in the solution melt for a period of time sufficient to cause growing Si to precipitate out of the solution to form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.
    Type: Grant
    Filed: May 13, 1992
    Date of Patent: May 24, 1994
    Assignee: Midwest Research Institute
    Inventor: Theodore F. Ciszek
  • Patent number: 5304534
    Abstract: An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: April 19, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Theodore F. Ciszek
  • Patent number: 5047112
    Abstract: A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.
    Type: Grant
    Filed: August 14, 1990
    Date of Patent: September 10, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Theodore F. Ciszek
  • Patent number: 4721539
    Abstract: New alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2 (where x ranges between 0 and 1 and preferably has a value of about 0.75) and CuIn.sub.y Ga.sub.(1-y) Se.sub.2 (where y ranges between 0 and 1 and preferably has a value of about 0.90) in the form of single crystals with enhanced structure perfection, which crystals are substantially free of fissures are disclosed. Processes are disclosed for preparing the new alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2. The process includes placing stoichiometric quantities of a Cu, Ag, In, and Se reaction mixture or stoichiometric quantities of a Cu, In, Ga, and Se reaction mixture in a refractory crucible in such a manner that the reaction mixture is surrounded by B.sub.2 O.sub.3, placing the thus loaded crucible in a chamber under a high pressure atmosphere of inert gas to confine the volatile Se to the crucible, and heating the reaction mixture to its melting point.
    Type: Grant
    Filed: July 15, 1986
    Date of Patent: January 26, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Theodore F. Ciszek
  • Patent number: 4652332
    Abstract: A process for preparing CuInSe.sub.2 crystals includes melting a sufficient quantity of B.sub.2 O.sub.3 along with stoichiometric quantities of Cu, In, and Se in a crucible in a high pressure atmosphere of inert gas to encapsulate the CuInSe.sub.2 melt and confine the Se to the crucible. Additional Se in the range of 1.8 to 2.2 percent over the stoichiometric quantity is preferred to make up for small amounts of Se lost in the process. The crystal is grown by inserting a seed crystal through the B.sub.2 O.sub.3 encapsulate into contact with the CuInSe.sub.2 melt and withdrawing the seed upwardly to grow the crystal thereon from the melt.
    Type: Grant
    Filed: November 29, 1984
    Date of Patent: March 24, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Theodore F. Ciszek
  • Patent number: 4650541
    Abstract: Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.
    Type: Grant
    Filed: September 12, 1984
    Date of Patent: March 17, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Theodore F. Ciszek
  • Patent number: 4594229
    Abstract: An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.
    Type: Grant
    Filed: February 25, 1981
    Date of Patent: June 10, 1986
    Assignee: Emanuel M. Sachs
    Inventors: Theodore F. Ciszek, Jeffery L. Hurd
  • Patent number: 4572812
    Abstract: A method and apparatus is disclosed for casting conductive and semiconduce materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semiconductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.
    Type: Grant
    Filed: August 13, 1984
    Date of Patent: February 25, 1986
    Assignee: The United States of America as represented by the Secretary of Energy
    Inventor: Theodore F. Ciszek