Patents by Inventor Theodore I. Kamins
Theodore I. Kamins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11551879Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: GrantFiled: February 1, 2020Date of Patent: January 10, 2023Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20220023645Abstract: The present invention relates to the field of electronic devices, in particular implantable electronic devices, e.g. for bio-medical applications, and more particularly, to hermetically packaged electronic devices for bio-medical in vivo applications and packaging methods for such electronic devices.Type: ApplicationFiled: December 9, 2019Publication date: January 27, 2022Inventors: Martin DETERRE, Jean-René TENAILLEAU, Theodore I KAMINS
-
Patent number: 10910166Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: GrantFiled: May 11, 2018Date of Patent: February 2, 2021Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20200176197Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: ApplicationFiled: February 1, 2020Publication date: June 4, 2020Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20200123398Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of conductive particles; a first solvent comprising a polyol or mixtures thereof, such as glycerin, and a second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the conductive particles are comprised of a metal, a semiconductor, an alloy of a metal and a semiconductor, or mixtures thereof, and may have sizes between about 5 nm to about 1.5 microns in any dimension. A representative conductive particle ink can be printed and annealed to produce a conductor.Type: ApplicationFiled: April 28, 2019Publication date: April 23, 2020Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
-
Patent number: 10573468Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: GrantFiled: October 2, 2018Date of Patent: February 25, 2020Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20190035561Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: ApplicationFiled: October 2, 2018Publication date: January 31, 2019Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Patent number: 10121608Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: GrantFiled: August 18, 2015Date of Patent: November 6, 2018Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20180261404Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: ApplicationFiled: May 11, 2018Publication date: September 13, 2018Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Patent number: 9972449Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: GrantFiled: August 20, 2015Date of Patent: May 15, 2018Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Patent number: 9972450Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.Type: GrantFiled: August 21, 2015Date of Patent: May 15, 2018Assignee: Printed Energy Pty LtdInventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20180022953Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of metallic particles; a plurality of semiconductor particles; and a first solvent. The pluralities of particles may also be comprised of an alloy of a metal and a semiconductor. The composition may further comprise a second solvent different from the first solvent. In a representative embodiment, the first solvent comprises a polyol or mixtures thereof, such as glycerin, and the second solvent comprises a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the metallic particles and the semiconductor particles are nanoparticles between about 5 nm to about 1.5 microns in any dimension. A representative metallic and semiconductor particle ink can be printed and annealed to produce a conductor.Type: ApplicationFiled: September 19, 2017Publication date: January 25, 2018Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
-
Patent number: 9354363Abstract: A sub-wavelength grating device having controlled phase response includes a grating layer having line widths, line thicknesses, line periods, and line spacings selected to produce a first level of control in phase changes of different portions of a beam of light reflected from the grating layer. The device also includes a substrate affixed to the grating layer that produces a second level of control in phase changes of different portions of a beam of light reflected from the grating layer, the second level of control being accomplished abrupt stepping of the substrate in a horizontal dimension, ramping the substrate in a horizontal dimension, or changing the index of refraction in a horizontal dimension.Type: GrantFiled: April 13, 2010Date of Patent: May 31, 2016Assignee: Hewlett Packard Enterprise Development LPInventors: Wei Wu, R. Stanley Williams, Jingjing Li, Theodore I. Kamins, Marco Fiorentino
-
Publication number: 20160086741Abstract: Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment includes: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment includes: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.Type: ApplicationFiled: December 3, 2015Publication date: March 24, 2016Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Vera Nicholaevna Lockett, Theodore I. Kamins, Thomas William Clinton
-
Publication number: 20150357677Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: ApplicationFiled: August 20, 2015Publication date: December 10, 2015Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20150357126Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.Type: ApplicationFiled: August 21, 2015Publication date: December 10, 2015Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20150357125Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).Type: ApplicationFiled: August 18, 2015Publication date: December 10, 2015Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
-
Publication number: 20150299481Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of conductive particles; a first solvent comprising a polyol or mixtures thereof, such as glycerin, and a second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the conductive particles are comprised of a metal, a semiconductor, an alloy of a metal and a semiconductor, or mixtures thereof, and may have sizes between about 5 nm to about 1.5 microns in any dimension. A representative conductive particle ink can be printed and annealed to produce a conductor.Type: ApplicationFiled: June 26, 2015Publication date: October 22, 2015Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
-
Publication number: 20150207020Abstract: A PV panel is manufactured using a monolayer of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The spheres are embedded in an uncured aluminum-containing layer on an aluminum foil substrate in a roll-to-roll process, and the aluminum-containing layer is heated to anneal the aluminum-containing layer as well as p-dope the bottom surface of the spheres. The diffusion of the p-type dopants also creates a back surface field in the spheres to improve efficiency. A dielectric layer is formed, and a phosphorus-containing layer is deposited over the spheres to dope the top surface n-type, forming a pn junction. The phosphorus layer is then removed. A conductor is deposited to contact the top surface. Conformal, index-graded lenses are then formed over each of the spheres to form a thin and flexible PV panel.Type: ApplicationFiled: April 1, 2015Publication date: July 23, 2015Inventors: Tricia A. Youngbull, Theodore I. Kamins, Vera N. Lockett, Matthew P. Gess
-
Patent number: 9048031Abstract: Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.Type: GrantFiled: March 7, 2014Date of Patent: June 2, 2015Assignee: NthDegree Technologies Worldwide Inc.Inventors: William Johnstone Ray, Neil O. Shotton, Vera Nicholaevna Lockett, Theodore I. Kamins, Thomas William Clinton, Mark David Lowenthal