Patents by Inventor Theodore M. Lyszczarz

Theodore M. Lyszczarz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11275868
    Abstract: An improved waveguide is disclosed. The waveguide utilizes a luminescent material disposed within or around its perimeter to introduce additional light into the waveguide. For example, the waveguide may include a plurality of planar layers having different refractive indexes. A luminescent material may be disposed along the outer edge of these layers. When light from within the waveguide strikes the luminescent material, it emits light, thereby adding to the light in the waveguide. Not only does the luminescent material introduce more light into the waveguide, it also introduces more light sources, thereby making it more difficult to introduce a probe without blocking at least a portion of the light destined for the image sensor. The luminescent material may be a phosphor.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: March 15, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Joshua Kramer, Karen M. G. V. Gettings, Marc J. Burke, Mankuan M. Vai, Theodore M. Lyszczarz
  • Publication number: 20210012034
    Abstract: An improved waveguide is disclosed. The waveguide utilizes a luminescent material disposed within or around its perimeter to introduce additional light into the waveguide. For example, the waveguide may include a plurality of planar layers having different refractive indexes. A luminescent material may be disposed along the outer edge of these layers. When light from within the waveguide strikes the luminescent material, it emits light, thereby adding to the light in the waveguide. Not only does the luminescent material introduce more light into the waveguide, it also introduces more light sources, thereby making it more difficult to introduce a probe without blocking at least a portion of the light destined for the image sensor. The luminescent material may be a phosphor.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 14, 2021
    Inventors: Michael W. Geis, Joshua Kramer, Karen M.G.V. Gettings, Marc J. Burke, Mankuan M. Vai, Theodore M. Lyszczarz
  • Patent number: 10740493
    Abstract: An improved waveguide is disclosed. The waveguide utilizes a luminescent material disposed within or around its perimeter to introduce additional light into the waveguide. For example, the waveguide may include a plurality of planar layers having different refractive indexes. A luminescent material may be disposed along the outer edge of these layers. When light from within the waveguide strikes the luminescent material, it emits light, thereby adding to the light in the waveguide. Not only does the luminescent material introduce more light into the waveguide, it also introduces more light sources, thereby making it more difficult to introduce a probe without blocking at least a portion of the light destined for the image sensor. The luminescent material may be a phosphor.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 11, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Joshua Kramer, Karen M.G.V. Gettings, Marc J. Burke, Mankuan M. Vai, Theodore M. Lyszczarz
  • Patent number: 10496376
    Abstract: A novel system for generating random numbers is disclosed. The radioactive source emits photons, which causes the release of electrons on the surface of the detector. The detector is configured as a two dimensional array having a plurality of pixels. This release of electrons creates a splatter pattern on the detector, which is then read by the processor. Subsequent photon emissions create a second splatter pattern, which is then read by the processor. The processor compares these two splatter patterns, and generates random numbers based on these two splatter patterns. In certain embodiments, the processor creates a difference matrix which represents a comparison of the two splatter patterns. The processor then classifies each pixel in the difference matrix in accordance with certain rules. In certain embodiments, these classification rules may vary as a function of time or as a function of where on the detector the pixel is disposed.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: December 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Harry R. Clark, Theodore M. Lyszczarz
  • Publication number: 20190235839
    Abstract: A novel system for generating random numbers is disclosed. The radioactive source emits photons, which causes the release of electrons on the surface of the detector. The detector is configured as a two dimensional array having a plurality of pixels. This release of electrons creates a splatter pattern on the detector, which is then read by the processor. Subsequent photon emissions create a second splatter pattern, which is then read by the processor. The processor compares these two splatter patterns, and generates random numbers based on these two splatter patterns. In certain embodiments, the processor creates a difference matrix which represents a comparison of the two splatter patterns. The processor then classifies each pixel in the difference matrix in accordance with certain rules. In certain embodiments, these classification rules may vary as a function of time or as a function of where on the detector the pixel is disposed.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 1, 2019
    Inventors: Harry R. Clark, Theodore M. Lyszczarz
  • Publication number: 20180025182
    Abstract: An improved waveguide is disclosed. The waveguide utilizes a luminescent material disposed within or around its perimeter to introduce additional light into the waveguide. For example, the waveguide may include a plurality of planar layers having different refractive indexes. A luminescent material may be disposed along the outer edge of these layers. When light from within the waveguide strikes the luminescent material, it emits light, thereby adding to the light in the waveguide. Not only does the luminescent material introduce more light into the waveguide, it also introduces more light sources, thereby making it more difficult to introduce a probe without blocking at least a portion of the light destined for the image sensor. The luminescent material may be a phosphor.
    Type: Application
    Filed: February 29, 2016
    Publication date: January 25, 2018
    Inventors: Michael W. Geis, Joshua Kramer, Karen M.G.V. Gettings, Marc J. Burke, Mankuan M. Vai, Theodore M. Lyszczarz
  • Patent number: 8818150
    Abstract: Method and apparatus for modulation of both the intensity and the polarization of radiation in silicon waveguides by applying a biasing voltage to the waveguide.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 26, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew E. Grein, Theodore M. Lyszczarz, Michael W. Geis, Steven J. Spector, Donna M. Lennon, Yoon Jung
  • Patent number: 7880204
    Abstract: A Silicon photodetector contains an insulating substrate having a top surface and a bottom surface. A Silicon layer is located on the top surface of the insulating substrate, where the Silicon layer contains a center region, the center region being larger in thickness than the rest of the Silicon layer. A top Silicon dioxide layer is located on a top surface of the center region. A left wing of the center region and a right wing of the center region are doped. The Silicon photodetector also has an active region located within the center region, where the active region contains a tailored crystal defect-impurity combination and Oxygen atoms.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: February 1, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Steven J. Spector, Donna M. Lennon, Matthew E. Grein, Robert T. Schulein, Jung U. Yoon, Franz Xaver Kaertner, Fuwan Gan, Theodore M. Lyszczarz
  • Publication number: 20100089443
    Abstract: Methods, devices, and compositions related to organic solar cells, sensors, and other photon processing devices are disclosed. In some aspects, an organic semiconducting composition is formed with nano-sized features, e.g., a layer conforming to a shape exhibiting nano-sized tapered features. Such structures can be formulated as an organic n-type and/or an organic p-type layer incorporated in a device that exhibits enhanced conductor mobility relative to conventional structures such as planar layered formed organic semiconductors. The nanofeatures can be formed on an exciton blocking layer (“EBL”) surface, with an organic semiconducting layer deposited thereon to conform with the EBL's surface features. A variety of material possibilities are disclosed, as well as a number of different configurations. Such organic structures can be used to form flexible solar cells in a roll-out format.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 15, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Theodore M. Bloomstein, Roderick R. Kunz, Theodore M. Lyszczarz, Vladimir Bulovic
  • Publication number: 20100025787
    Abstract: A Silicon photodetector contains an insulating substrate having a top surface and a bottom surface. A Silicon layer is located on the top surface of the insulating substrate, where the Silicon layer contains a center region, the center region being larger in thickness than the rest of the Silicon layer. A top Silicon dioxide layer is located on a top surface of the center region. A left wing of the center region and a right wing of the center region are doped. The Silicon photodetector also has an active region located within the center region, where the active region contains a tailored crystal defect-impurity combination and Oxygen atoms.
    Type: Application
    Filed: October 2, 2006
    Publication date: February 4, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Steven J. Spector, Donna M. Lennon, Matthew E. Grein, Robert T. Schulein, Jung U. Yoon, Franz Xaver Kaertner, Fuwan Gan, Theodore M. Lyszczarz
  • Patent number: 7443090
    Abstract: A surface-emission cathode formed on an insulating surface having cantilevered, i.e. “undercut,” electrodes. Suitable insulating surfaces include negative electron affinity (NEA) insulators such as glass or diamond. The cathode can operate in a comprised vacuum (e.g., 10?7 Torr) with no bias on the electrodes and low vacuum electric fields (e.g., at least 10 V cm?1). Embodiments of the present invention are inexpensive to fabricate, requiring lithographic resolution of approximately 10 micrometers. These cathodes can be formed over large areas for use in lighting and displays and are suitable for satellite applications, such as cathodes for tethers, thrusters and space-charging neutralizers.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: October 28, 2008
    Assignee: The Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Theodore H. Fedynyshyn, Sandra J. Deneault, Keith E. Krohn, Theodore M. Lyszczarz, Michael F. Marchant
  • Patent number: 5990604
    Abstract: Improved field-emission devices are based on composing the back contact to the emitter material such that electron-injection efficiency into the emitter material is enhanced. Alteration of the emitter material structure near the contact or geometric field enhancement due to contact morphology gives rise to the improved injection efficiency. The devices are able to emit electrons at high current density and lower applied potential differences and temperatures than previously achieved. Wide-bandgap emitter materials without shallow donors benefit from this approach. The emission characteristics of diamond substitutionally doped with nitrogen, having a favorable emitter/vacuum band structure but being limited by the efficiency of electron injection into it, show especial improvement in the context of the invention.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: November 23, 1999
    Assignee: Massacusetts Institute of Technology
    Inventors: Michael W. Geis, Jonathan C. Twichell, Theodore M. Lyszczarz, Nickolay N. Efremow
  • Patent number: 5973451
    Abstract: The surface-emission cathodes of the invention are constructed so that the cathode body has a free surface over which electrons are efficiently accelerated after injection from a conductive contact. The junction between the free surface and the contact has the property that the height of the barrier to tunneling from the contact to floating surface states associated with the free surface of the cathode body is lower than both the barrier to emission from the contact to vacuum and the barrier to injection from the contact into the conduction band of the cathode body material. Thus under an applied potential, electrons are injected from the contact into floating surface states associated with the free surface. After acceleration, electrons leave the free surface, either emitted to vacuum or injected into another medium.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: October 26, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Nickolai N. Efremow, Kevin E. Krohn, Jonathan C. Twichell, Theodore M. Lyszczarz
  • Patent number: 5729094
    Abstract: An energetic-electron emitter providing electrons having kinetic energies on the order of one thousand electron volts without acceleration through vacuum. An average electric field of 10.sup.5 V/m to 10.sup.10 V/m applied across a layer of emissive cathode material accelerates electrons inside the layer. The cathode material is a high-dielectric strength, rigid-structure, wide-bandgap semiconductors, especially type Ib diamond. A light-emitting device incorporates the energetic-electron emitter as a source of excitation to luminescence.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: March 17, 1998
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Jonathan C. Twichell, Theodore M. Lyszczarz
  • Patent number: 5713775
    Abstract: Improved field-emission devices are based on composing the back contact to the emitter material such that electron-injection efficiency into the emitter material is enhanced. Alteration of the emitter material structure near the contact or geometric field enhancement due to contact morphology gives rise to the improved injection efficiency. The devices are able to emit electrons at high current density and lower applied potential differences and temperatures than previously achieved. Wide-bandgap emitter materials without shallow donors benefit from this approach. The emission characteristics of diamond substitutionally doped with nitrogen, having a favorable emitter/vacuum band structure but being limited by the efficiency of electron injection into it, show especial improvement in the context of the invention.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: February 3, 1998
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Jonathan C. Twichell, Theodore M. Lyszczarz, Nickolay N. Efremow
  • Patent number: 4618261
    Abstract: A lens or fiberoptic cable focuses energy from a collimated helium neon laser beam upon a point on a mask. Some of the focused energy is reflected from the mask upon a photodetector array in an image plane, and some of this energy is reflected from a substrate closely adjacent to the mask after passing through the mask upon the photodetector array to produce an interference pattern that is sensed and characterized by a spatial frequency representative of the distance between the mask and substrate.
    Type: Grant
    Filed: January 16, 1984
    Date of Patent: October 21, 1986
    Assignee: Massachusetts Institute of Technology
    Inventors: Dale C. Flanders, Theodore M. Lyszczarz