Patents by Inventor Theodore M. Smiecinski

Theodore M. Smiecinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141093
    Abstract: A polyalkyleneoxy polyol (P) has an average nominal functionality in the range of 2 to 8; a hydroxy number in the range of 10 to 500 mg KOH/g measured according to ASTM method D4272; and a weight average molecular weight in the range of 500 to 25,000 measured using GPC with polystyrene standard and tetrahydrofuran as solvent. The polyol (P) contains ethyleneoxy in an amount in the range of 50 to 95 wt. %, based on the overall weight of the polyol (P).
    Type: Application
    Filed: March 17, 2022
    Publication date: May 2, 2024
    Applicant: BASF SE
    Inventors: Yue YANG, Theodore M. Smiecinski, Thomas H. Plegue, Mark Patrick McBride
  • Patent number: 9637585
    Abstract: The subject disclosure provides a viscoelastic polyurethane foam and a method of forming the viscoelastic polyurethane foam. The viscoelastic polyurethane foam comprises the reaction product of a toluene diisocyanate and an isocyanate reactive component. The isocyanate reactive component comprises a first polyether triol, a second polyether triol, an amino alcohol chain extender, and a hydrolyzable polyether polydimethylsiloxane copolymer. The first polyether triol has a weight-average molecular weight of from 500 to 5,000 g/mol, at least 60 parts by weight ethyleneoxy units, based on the total weight of the first polyether triol, and at least 10% ethyleneoxy end caps. The second polyether triol, which is different from the first polyether triol, has a weight-average molecular weight of from 5,000 to 10,000 g/mol and at least 80% ethyleneoxy end caps.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: May 2, 2017
    Assignee: BASF SE
    Inventors: Theodore M. Smiecinski, Chad Alan Rogers
  • Patent number: 9193821
    Abstract: The invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, c) blowing agents, wherein the compounds having at least two hydrogen atoms which are reactive toward isocyanate groups b) comprise b1) from 0 to 90 parts by weight of at least one polyether alcohol consisting of exclusively propylene oxide units or propylene oxide units and not more than 50% by weight, based on the total weight of the alkylene oxides used, of ethylene oxide units in the polyether chain and having a nominal functionality of from 3 to 8 and a hydroxyl number in the range from 100 to 350 mg KOH/g, and b2) from 10 to 100 parts by weight of at least one graft polyol which can be prepared by in-situ polymerization of olefinically unsaturated monomers in at least one polyether alcohol which has exclusively propylene oxide units or propylene oxide units and not more than 50% by wei
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 24, 2015
    Assignee: BASF SE
    Inventors: Heinz-Dieter Lutter, Jens Mueller, Daniel Freidank, Theodore M. Smiecinski, Stephan Goettke, Berend Eling
  • Publication number: 20150252140
    Abstract: The subject disclosure provides a viscoelastic polyurethane foam and a method of forming the viscoelastic polyurethane foam. The viscoelastic polyurethane foam comprises the reaction product of a toluene diisocyanate and an isocyanate reactive component. The isocyanate reactive component comprises a first polyether triol, a second polyether triol, an amino alcohol chain extender, and a hydrolyzable polyether polydimethylsiloxane copolymer. The first polyether triol has a weight-average molecular weight of from 500 to 5,000 g/mol, at least 60 parts by weight ethyleneoxy units, based on the total weight of the first polyether triol, and at least 10% ethyleneoxy end caps. The second polyether triol, which is different from the first polyether triol, has a weight-aver age molecular weight of from 5,000 to 10,000 g/mol and at least 80% ethyleneoxy end caps.
    Type: Application
    Filed: October 8, 2013
    Publication date: September 10, 2015
    Inventors: Theodore M. Smiecinski, Chad Alan Rogers
  • Patent number: 9062174
    Abstract: A single layer flexible foam includes the reaction product of an (A) isocyanate component and a (B) isocyanate-reactive component. The isocyanate component and the isocyanate-reactive component react in the presence of a (C) polyurethane gel. The polyurethane gel has a viscosity of from about 3,000 to about 12,000 cps at 25° C. and includes the reaction product of a polyol component and a second isocyanate component which react at an isocyanate index of from about 10 to about 70. The flexible foam also includes a plurality of agglomerated gel substrates that are formed from the polyurethane gel and that are dispersed in the flexible foam. The flexible foam is formed using a method including the steps of providing (A), providing (B), providing (C), and combining (C) with (A) and (B), such that (A) and (B) react in the presence of (C) to form the flexible foam.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: June 23, 2015
    Assignee: BASF SE
    Inventor: Theodore M. Smiecinski
  • Patent number: 9018272
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: April 28, 2015
    Assignee: BASF SE
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Patent number: 8883914
    Abstract: A resin composition includes a compound having at least two reactive hydrogen atoms and a polyurethane encapsulated particle including a core particle and a polyurethane layer disposed about the core particle. The resin composition may be used in an article and in a method of making the article. The article includes the reaction product of the resin composition and an isocyanate that are reacted in the presence of the polyurethane encapsulated particle. The method of making the article includes providing the core particle in a vessel. The method also includes introducing and combining a polyol component and an isocyanate component to encapsulate the core particle. The method further includes introducing and combining the resin composition and the isocyanate, in the presence of the polyurethane encapsulated particle, to form the article.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 11, 2014
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Donald C. Mente, Suzanne Dakin, Steven E. Wujcik, Theodore M. Smiecinski
  • Publication number: 20140121290
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Application
    Filed: October 22, 2013
    Publication date: May 1, 2014
    Applicant: BASF SE
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Patent number: 8604094
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The isocyanate-reactive component comprises a polyether polyol having a molecular weight of from about 700 to about 20,000 and a plurality of terminal caps which are substantially free of ethylene oxide groups. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Publication number: 20120115970
    Abstract: The invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, c) blowing agents, wherein the compounds having at least two hydrogen atoms which are reactive toward isocyanate groups b) comprise b1) from 0 to 90 parts by weight of at least one polyether alcohol consisting of exclusively propylene oxide units or propylene oxide units and not more than 50% by weight, based on the total weight of the alkylene oxides used, of ethylene oxide units in the polyether chain and having a nominal functionality of from 3 to 8 and a hydroxyl number in the range from 100 to 350 mg KOH/g, and b2) from 10 to 100 parts by weight of at least one graft polyol which can be prepared by in-situ polymerization of olefinically unsaturated monomers in at least one polyether alcohol which has exclusively propylene oxide units or propylene oxide units and not more than 50% by wei
    Type: Application
    Filed: July 14, 2010
    Publication date: May 10, 2012
    Applicant: BASF SE
    Inventors: Heinz-Dieter Lutter, Jens Mueller, Daniel Freidank, Theodore M. Smiecinski, Stephan Goettke, Berend Eling
  • Publication number: 20120041089
    Abstract: A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Inventors: Yeonsuk Roh, Rajesh Kumar, Cheng-Le Zhao, David Kaczan, Theodore M. Smiecinski
  • Patent number: 8084631
    Abstract: A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: December 27, 2011
    Assignee: BASF SE
    Inventors: Yeonsuk Roh, Rajesh Kumar, Cheng-Le Zhao, David Kaczan, Theodore M. Smiecinski
  • Publication number: 20100160473
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The isocyanate-reactive component comprises a polyether polyol having a molecular weight of from about 700 to about 20,000 and a plurality of terminal caps which are substantially free of ethylene oxide groups. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Publication number: 20100160470
    Abstract: A flexible polyurethane foam having a density of <100 kg/m3 comprises a reaction product of a polyisocyanate composition and an isocyanate-reactive composition. The polyisocyanate composition comprises a polymeric MDI component and a monomeric MDI component comprising 2,4?-MDI that is present in the monomeric MDI in an amount >35 parts by weight of the 2,4?-MDI based on 100 parts by weight of the monomeric MDI. The isocyanate-reactive composition comprises a primary hydroxyl-terminated graft polyether polyol and a second polyol different from the primary hydroxyl-terminated graft polyether polyol. The primary hydroxyl-terminated graft polyether polyol comprises a carrier polyol and particles of co-polymerized styrene and acrylonitrile. The carrier polyol has a weight average molecular weight of ?3,500 g/mol.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Theodore M. Smiecinski, Steven E. Wujcik
  • Publication number: 20090286896
    Abstract: A polyol includes the reaction product of an epoxidized oil and an organic acid. The epoxidized oil and the organic acid are reacted in the presence of a Lewis base catalyst including at least one of a phosphorous atom or a nitrogen atom. The polyol is formed by a method that includes the step of reacting the epoxidized oil with the organic acid in the presence of the Lewis base catalyst.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Inventors: Yeonsuk Roh, Rajesh Kumar, Cheng-Le Zhao, David Kaczan, Theodore M. Smiecinski
  • Patent number: 7431907
    Abstract: An apparatus includes a container that defines an interior. The interior is isolated from ambient atmosphere for receiving a composition that includes isocyanate. A conduit extends into the container and defines a channel therethrough. An interior of the container is in fluid communication with the ambient atmosphere through the channel for conveying a gaseous waste stream that includes vaporized unreacted isocyanate out of the container and into the ambient atmosphere. A medium is disposed in the channel and has free isocyanate-reactive groups for reacting with unreacted isocyanate. The free isocyanate-reactive groups remove the unreacted isocyanate from the gaseous waste stream. The medium, by including the free isocyanate-reactive groups, relies on a chemical reaction to remove the unreacted isocyanate.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: October 7, 2008
    Assignee: BASF Corporation
    Inventors: Yogesh C. Trivedi, Theodore M. Smiecinski
  • Patent number: 7238730
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 3, 2007
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Publication number: 20040266900
    Abstract: The subject invention provides a viscoelastic polyurethane foam having a density of from one to thirty pounds per cubic foot formed from a composition comprising an isocyanate component substantially free of toluene diisocyanate, an isocyanate-reactive component, and a chain extender having a backbone chain with from two to eight carbon atoms. The chain extender also has a weight-average molecular weight of less than 1,000 and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the composition. The viscoelastic polyurethane foam has a glass transition temperature of from 15 to 35 degrees Celsius and a tan delta peak of from 0.9 to 1.5.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Raymond Neff, Raghuram Gummaraju, Theodore M. Smiecinski
  • Publication number: 20040266897
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Patent number: 6797736
    Abstract: The subject invention provides a method of forming high resilience slabstock polyurethane foam having random cell structures to produce latex-like feel and characteristics. The method includes the first step of providing an isocyanate-reactive component and an isocyanate component to react with the isocyanate-reactive component. A first nucleation gas is provided under low pressure and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a first cell structure in the polyurethane foam. A second nucleation gas is provided under low pressure, being different than the first nucleation gas, and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a second cell structure in the polyurethane foam that is different than the first cell structure.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 28, 2004
    Assignee: BASF Corporation
    Inventors: Theodore M. Smiecinski, Wassana Apichatachutapan, Todd J. Green, Thomas R. Benevenuti