Patents by Inventor Theodore McCall Evenden

Theodore McCall Evenden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7325293
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber
  • Patent number: 6676381
    Abstract: A method and apparatus for casting a near-net-shape article from a high temperature material, such as a refractory metal intermetallic composite material. The apparatus includes: a means for forming a molten material comprising at least one of a metal and an alloy; a means for pouring the molten material; a mold assembly comprising a solid shell having a face coat interposed between the solid shell and molten material; and a heater assembly for maintaining the solid shell at a temperature. The molten material solidifies within the solid shell to form a near-net shape of the article. The near-net shape article may be a turbine assembly component, such as, but not limited to, a vane or airfoil.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: January 13, 2004
    Assignee: General Electric Company
    Inventors: Pazhayannur Ramanathan Subramanian, Melvin Robert Jackson, Paul Leonard Dupree, Bernard Patrick Bewlay, Theodore McCall Evenden
  • Publication number: 20030190235
    Abstract: A method and apparatus for casting a near-net-shape article from a high temperature material, such as a refractory metal intermetallic composite material. The apparatus includes: a means for forming a molten material comprising at least one of a metal and an alloy; a means for pouring the molten material; a mold assembly comprising a solid shell having a face coat interposed between the solid shell and molten material; and a heater assembly for maintaining the solid shell at a temperature. The molten material solidifies within the solid shell to form a near-net shape of the article. The near-net shape article may be a turbine assembly component, such as, but not limited to, a vane or airfoil.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 9, 2003
    Applicant: General Electric Company
    Inventors: Pazhayannur Ramanathan Subramanian, Melvin Robert Jackson, Paul Leonard Dupree, Bernard Patrick Bewlay, Theodore McCall Evenden
  • Publication number: 20030168246
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Application
    Filed: January 10, 2003
    Publication date: September 11, 2003
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber
  • Patent number: 6583362
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber
  • Publication number: 20030085053
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Application
    Filed: November 5, 2001
    Publication date: May 8, 2003
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber