Patents by Inventor Theodore R. Whitney

Theodore R. Whitney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7130020
    Abstract: A photolithographic machine is described for transferring fine patterns from a photomask to a flexible roll-to-roll format. It is capable of printing multiple layers in exact registry onto a distorted format. It contains 1 to 1 reflective optics, dynamic distortion and magnification correction. The optical transfer assembly scans reciprocally across the format and back and the photomask/platen assembly moves incrementally forward between scans to complete a raster pattern. Both the object and image fields are autofocussed. The optical transfer assembly is retained into a straight-line scanning path by opposed air bearings retained on a straight guide. The photomask/platen assembly is retained into an orthogonal path by air/vacuum bearings operating on a vertical stone face. Together this arrangement substantially prevents yaw scanning errors. The web is fed through the machine from roll to roll without twisting. It remains stationary during each recording pass.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 31, 2006
    Inventor: Theodore R. Whitney
  • Publication number: 20040218162
    Abstract: A photolithographic machine is described for transferring fine patterns from a photomask to a flexible roll-to-roll format. It is capable of printing multiple layers in exact registry onto a distorted format. It contains 1 to 1 reflective optics, dynamic distortion and magnification correction. The optical transfer assembly scans reciprocally across the format and back and the photomask/platen assembly moves incrementally forward between scans to complete a raster pattern. Both the object and image fields are autofocussed. The optical transfer assembly is retained into a straight-line scanning path by opposed air bearings retained on a straight guide. The photomask/platen assembly is retained into an orthogonal path by air/vacuum bearings operating on a vertical stone face. Together this arrangement substantially prevents yaw scanning errors. The web is fed through the machine from roll to roll without twisting. It remains stationary during each recording pass.
    Type: Application
    Filed: March 2, 2004
    Publication date: November 4, 2004
    Inventor: Theodore R. Whitney
  • Patent number: 5479238
    Abstract: The current limits of resolution of multi-element optical systems are exceeded by reducing the number of elements while introducing at the critical aperture a blazed transmission grating having grating rings of low bending power defined by multiple plateaus. By illuminating the optical train with monochromatic light that constitutes a multiplicity of distributed sources having a substantial temporal coherence but spatial incoherence and by varying the slopes and widths of the grating rings, local phase delays are introduced that adjust aberrations in the optical system, providing an aligned composite wavefront. The system and method may be used for presenting an image, as for a wafer stepper, or for viewing an image, as in a microscope.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: December 26, 1995
    Inventor: Theodore R. Whitney
  • Patent number: 5386319
    Abstract: The current limits of resolution of multi-element optical systems are exceeded by reducing the number of elements while introducing at the critical aperture a blazed transmission grating having grating rings of low bending power defined by multiple plateaus. By illuminating the optical train with monochromatic light that constitutes a multiplicity of distributed sources having a substantial temporal coherence but spatial incoherence and by varying the slopes and widths of the grating rings, local phase delays are introduced that adjust aberrations in the optical system, providing an aligned composite wavefront. The system and method may be used for presenting an image, as for a wafer stepper, or for viewing an image, as in a microscope.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: January 31, 1995
    Inventor: Theodore R. Whitney
  • Patent number: 5156943
    Abstract: The current limits of resolution of multi-element optical systems are exceeded by reducing the number of elements while introducing at the critical aperture a blazed transmission grating having grating rings of low bending power defined by multiple plateaus. By illuminating the optical train with monochromatic light that constitutes a multiplicity of distributed sources having a substantial temporal coherence but spatial incoherence and by varying the slopes and widths of the grating rings, local phase delays are introduced that adjust aberrations in the optical system, providing an aligned composite wavefront. The system and method may be used for presenting an image, as for a wafer stepper, or for viewing an image, as in a microscope.
    Type: Grant
    Filed: May 8, 1990
    Date of Patent: October 20, 1992
    Inventor: Theodore R. Whitney
  • Patent number: 4936665
    Abstract: The current limits of resolution of multi-element optical systems are exceeded by reducing the number of elements while introducing at the critical aperture a blazed transmission grating having grating rings of low bending power defined by multiple plateaus. By illuminating the optical train with monochromatic light that constitutes a multiplicity of distributed sources having a substantial temporal coherence but spatial incoherence and by varying the slopes and widths of the grating rings, local phase delays are introduced that adjust aberrations in the optical system, providing an aligned composite wavefront. The system and method may be used for presenting an image, as for a wafer stepper, or for viewing an image, as in a microscope.
    Type: Grant
    Filed: October 13, 1987
    Date of Patent: June 26, 1990
    Inventor: Theodore R. Whitney
  • Patent number: 4661699
    Abstract: Apparatus (10) for controlling a beam (12) of coherent light includes a reference scale (38, 138) provided with indicia forming a plurality of spokes having two sets of properties. The first of the two sets of properties is an evenly spaced first set of edges (41) arranged for generating a data clock exactly referenced to a position of a first of the two separate, perpendicular directions. A second set of edges (44) are each spaced variably from an associated one of the first set of edges (41) as a function of the other of the two separate, perpendicular directions, making the second of the two sets of properties a variable width of each of the spokes.
    Type: Grant
    Filed: February 10, 1986
    Date of Patent: April 28, 1987
    Assignee: T. R. Whitney Corporation
    Inventors: Thomas E. Welmers, Theodore R. Whitney
  • Patent number: 4541712
    Abstract: In this laser pattern generator, plural laser beams are arranged in a closely spaced, noninterfering array. The beams are concurrently deflected across a region of the target surface by an acousto-optic deflector driven by a swept frequency drive signal. The target is moved perpendicular to the direction of deflection to reposition it for exposure during the next stroke of the beams. The extent of target offset in the direction of deflection is measured and used to control initiation of modulation during each deflection stroke, so that each portion of the generated pattern begins from a uniform reference line on the target. Pattern data is supplied to the beam modulators in accordance with data clock pulses the repetition rate of which is established by the rate of change of frequency of the deflector drive signal.
    Type: Grant
    Filed: December 21, 1981
    Date of Patent: September 17, 1985
    Assignee: TRE Semiconductor Equipment Corporation
    Inventor: Theodore R. Whitney
  • Patent number: RE33931
    Abstract: In this laser pattern generator, plural laser beams are arranged in a closely spaced, noninterfering array. The beams are concurrently deflected across a region of the target surface by an acousto-optic deflector driven by a swept frequency drive signal. The target is moved perpendicular to the direction of deflection to reposition it for exposure during the next stroke of the beams. The extent of target offset in the direction of deflection is measured and used to control initiation of modulation during each deflection stroke, so that each portion of the generated pattern begins from a uniform reference line on the target. Pattern data is supplied to the beam modulators in accordance with data clock pulses the repetition rate of which is established by the rate of change of frequency of the deflector drive signal.
    Type: Grant
    Filed: July 20, 1987
    Date of Patent: May 19, 1992
    Assignee: American Semiconductor Equipment Technologies
    Inventor: Theodore R. Whitney