Patents by Inventor Theodore Reck
Theodore Reck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10100858Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: GrantFiled: October 28, 2016Date of Patent: October 16, 2018Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
-
Patent number: 9791321Abstract: A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.Type: GrantFiled: May 24, 2013Date of Patent: October 17, 2017Assignee: California Institute of TechnologyInventors: Goutam Chattopadhyay, Ken B. Cooper, Emmanuel Decrossas, John J. Gill, Cecile Jung-Kubiak, Choonsup Lee, Robert Lin, Imran Mehdi, Alejandro Peralta, Theodore Reck, Jose Siles
-
Publication number: 20170045065Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: ApplicationFiled: October 28, 2016Publication date: February 16, 2017Inventors: Cecile JUNG-KUBIAK, Theodore RECK, Bertrand THOMAS, Robert H. LIN, Alejandro PERALTA, John J. GILL, Choonsup LEE, Jose V. SILES, Risaku TODA, Goutam CHATTOPADHYAY, Ken B. COOPER, Imran MEHDI
-
Patent number: 9512863Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: GrantFiled: April 26, 2013Date of Patent: December 6, 2016Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
-
Patent number: 9461352Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.Type: GrantFiled: April 15, 2014Date of Patent: October 4, 2016Assignee: California Institute of TechnologyInventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
-
Publication number: 20150300884Abstract: A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.Type: ApplicationFiled: May 24, 2013Publication date: October 22, 2015Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Theodore Reck, Ken B. Cooper, Cecile Jung-Kubiak, Choonsup Lee, John J. Gill
-
Publication number: 20140340178Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.Type: ApplicationFiled: April 15, 2014Publication date: November 20, 2014Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
-
Publication number: 20140147192Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: ApplicationFiled: April 26, 2013Publication date: May 29, 2014Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi