Patents by Inventor Theodore S. Rappaport

Theodore S. Rappaport has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11889413
    Abstract: Exemplary apparatus can be provided that can comprise a plurality of antennas; a plurality of conversion systems, each capable of accepting and/or producing one or more digital signals; a circuit (e.g., radio circuit) configured to couple the antennas to the conversion systems; and computer arrangement configurable to selectively control operation of the conversion systems according to one or more predetermined criteria. In some embodiments, the conversion systems can be configured to utilize different sampling rates and/or quantization resolutions and/or to accept and/or produce different numbers of digital signals. Exemplary conversion systems can be enabled/disabled such that one or more can operate simultaneously based on, e.g., subframe timing of received signal, predetermined schedule, power or energy of received signals, availability of reference signals, channel coherence time, and apparatus energy consumption.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 30, 2024
    Assignee: NEW YORK UNIVERSITY
    Inventors: Sundeep Rangan, Theodore S. Rappaport, Dennis Shasha
  • Patent number: 11876548
    Abstract: Wireless devices, and particularly mobile devices such as cellphones, PDAs, computers, navigation devices, etc., as well as other devices which transmit or receive data or other signals at multiple frequency bands utilize at least one antenna to transmit and receive and a plurality of different bands (e.g., GSM cellular communication band; Bluetooth short range communication band; ultrawideband (UWB) communications, etc.). These wireless devices can simultaneously transmit or receive at a plurality of different bands, or simultaneously transmit and receive at different bands. The wireless devices have the ability to use a single physical structure (e.g., an antenna for transmission and reception of many different bands. The antenna can he either actively tuned or passively tuned using one or more elements. The antenna may comprise a plurality of antenna elements or antennas, and at least one antenna may be a steerable antenna.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 16, 2024
    Inventor: Theodore S. Rappaport
  • Publication number: 20230319609
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Application
    Filed: October 20, 2022
    Publication date: October 5, 2023
    Inventor: Theodore S. Rappaport
  • Publication number: 20230213647
    Abstract: An example system and method provides radiating into the 3D environment a millimeter wave (mmWave) radio frequency (RF) radiation signal that interacts with reflective surfaces, penetrable surfaces, scattering surfaces of the 3D environment, producing respective multipath components, determining information from two or more of the multipath components, including two among, or, optionally, all of angle of arrival (AoA), angle of departure (AoD), time of arrival, relative time of arrival (RTA), and phase and, based on the information and the received multipath components, performs computing the user device’s relative or absolute mobile device location in relation to the surrounding 3D environment, and providing images or video of the surrounding 3D environment to a display or a storage of the user’s mobile device, for displaying or storing.
    Type: Application
    Filed: March 10, 2023
    Publication date: July 6, 2023
    Inventor: Theodore S. RAPPAPORT
  • Patent number: 11624821
    Abstract: An exemplary system, method and computer-accessible medium for generating an image(s) or a video(s) of an environment(s), which can include, for example, generating a first millimeter wave (mmWave) radiofrequency (RF) radiation using a mobile device(s), providing the first mmWave RF radiation to the at least one environment, receiving, at the mobile device(s), a second mmWave RF radiation from the environment(s) that can be based on the first mmWave RF radiation, and generating the image(s) or the video(s) based on the second mmWave RF radiation.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: April 11, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventor: Theodore S. Rappaport
  • Patent number: 11509386
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 22, 2022
    Inventor: Theodore S. Rappaport
  • Publication number: 20220163616
    Abstract: Exemplary system, method and computer-accessible medium for selecting at least one location of (i) at least one receiver or transceiver or (ii) at least one transmitter or transceiver can be provided. For example, it is possible to facilitate a receipt, from the at least one transmitter or transceiver, of a plurality of signals by the receiver(s) or transceiver(s). Each of the signals has a multipath component. Then, it is possible to determine time of flight (ToF) information and angle of arrival (AoA) information of the multipath components present in the signals. Further, it is possible to determine one or more possible locations of (i) the receiver(s) or transceiver(s) or (ii) the transmitter(s) or transceiver(s) based on the ToF information, the AoA information, and a model of physical surroundings. The location(s) of (i) the receiver(s) or transceiver(s), or (ii) the transmitter(s) or transceiver(s) can be selected based on the one or more possible locations and an extended Kalman filter (“EKF”).
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: THEODORE S. RAPPAPORT, OJAS KANHERE
  • Publication number: 20220141615
    Abstract: A computerized system, method and process allows telecommunications carriers to find, evaluate and select locations for equipment through direct access to end users, while providing citizens the opportunity to offer the use of their dwelling or other assets to carriers. The system and method further provides a computerized mechanism for (a) creating an inventory and marketplace for available properties for use in telecommunications networks, (b) providing quality and/or performance monitoring and control for wireless communication systems based on data in the clearinghouse, and (c) providing localized content over wireless networks using the clearinghouse.
    Type: Application
    Filed: September 10, 2021
    Publication date: May 5, 2022
    Inventor: Theodore S. Rappaport
  • Publication number: 20220107383
    Abstract: Exemplary system, method and computer-accessible medium for selecting at least one location of (i) at least one receiver or transceiver or (ii) at least one transmitter or transceiver can be provided. For example, it is possible to facilitate a receipt, from the at least one transmitter or transceiver, of a plurality of signals by the receiver(s) or transceiver(s). Each of the signals has a multipath component. Then, it is possible to determine time of flight (ToF) information and angle of arrival (AoA) information of the multipath components present in the signals. Further, it is possible to determine one or more possible locations of (i) the receiver(s) or transceiver(s) or (ii) the transmitter(s) or transceiver(s) based on the ToF information, the AoA information, and a model of physical surroundings. The location(s) of (i) the receiver(s) or transceiver(s), or (ii) the transmitter(s) or transceiver(s) can be selected based on the one or more possible locations.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Inventors: Theodore S. Rappaport, Ojas Kanhere
  • Publication number: 20210399755
    Abstract: Wireless devices, and particularly mobile devices such as cellphones, PDAs, computers, navigation devices, etc., as well as other devices which transmit or receive data or other signals at multiple frequency bands utilize at least one antenna to transmit and receive and a plurality of different bands (e.g., GSM cellular communication band; Bluetooth short range communication band; ultrawideband (UWB) communications, etc.). These wireless devices can simultaneously transmit or receive at a plurality of different bands, or simultaneously transmit and receive at different bands. The wireless devices have the ability to use a single physical structure (e.g., an antenna for transmission and reception of many different bands. The antenna can he either actively tuned or passively tuned using one or more elements. The antenna may comprise a plurality of antenna elements or antennas, and at least one antenna may be a steerable antenna.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 23, 2021
    Inventor: Theodore S. Rappaport
  • Patent number: 11063625
    Abstract: Wireless devices, and particularly mobile devices such as cellphones, PDAs, computers, navigation devices, etc., as well as other devices which transmit or receive data or other signals at multiple frequency bands utilize at least one steerable antenna, and may be configured to transmit and receive using plurality of different bands (e.g., GSM cellular communication band; Bluetooth short range communication band; ultrawideband (UWB) communications, etc.). These wireless devices can determine zones or spans of directions in which to avoid radiating beams at 10 GHz or above, and can receive signals on either the steerable antenna or another antenna. In addition, the wireless devices can be configured for radiating in a pattern that is different from the receiving pattern.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 13, 2021
    Inventor: Theodore S. Rappaport
  • Publication number: 20210058142
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Application
    Filed: September 1, 2020
    Publication date: February 25, 2021
    Inventor: Theodore S. Rappaport
  • Patent number: 10797783
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: October 6, 2020
    Inventor: Theodore S. Rappaport
  • Patent number: 10794984
    Abstract: Exemplary embodiments include a computer-implemented method for configuring at least one antenna array comprising receiving a plurality of samples corresponding to signals incident on a plurality of antennas; using a computer arrangement, computing one or more data related to an envelope of the samples and estimating a direction of arrival of the signals incident on the antennas based on the one or more computed data; and configuring the at least one antenna array based on the estimated direction of arrival. The computing and estimating procedures can be performed for each of a plurality of direction-of-arrival candidates. The one or more data can be statistics corresponding to multipath shape factor parameters. The spatial selectivity of the at least one antenna array can be configured based on the estimated direction of arrival. Other exemplary embodiments include apparatus and computer-readable media embodying one or more of the exemplary computer-implemented methods and/or procedures.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: October 6, 2020
    Assignee: New York University
    Inventor: Theodore S. Rappaport
  • Patent number: 10547372
    Abstract: Exemplary embodiments include a communication system comprising a portal between radio-frequency propagation environments; one or more of interface points disposed in the plurality of propagation environment and configured to communicate with each other via the portal; and one or more access points disposed in one of the propagation environments, at least a portion being configured to communicate with a particular interface point.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: January 28, 2020
    Assignee: New York University
    Inventors: Theodore S. Rappaport, Dennis Shasha
  • Publication number: 20200025911
    Abstract: An exemplary system, method and computer-accessible medium for generating an image(s) or a video(s) of an environment(s), which can include, for example, generating a first millimeter wave (mmWave) radiofrequency (RF) radiation using a mobile device(s), providing the first mmWave RF radiation to the at least one environment, receiving, at the mobile device(s), a second mmWave RF radiation from the environment(s) that can be based on the first mmWave RF radiation, and generating the image(s) or the video(s) based on the second mmWave RF radiation.
    Type: Application
    Filed: May 24, 2019
    Publication date: January 23, 2020
    Inventor: THEODORE S. RAPPAPORT
  • Patent number: 10320461
    Abstract: Exemplary embodiments include a computer-implemented method for configuring at least one antenna array comprising receiving a plurality of sets of samples corresponding to signals incident on a plurality of antennas; computing a mean of the envelopes of the sums of the respective sets; estimating a direction of arrival of the signals incident on the antennas based on the computed means; and configuring the antenna array based on the estimated direction of arrival. The computing and estimating procedures can be performed for each of a plurality of direction-of-arrival candidates. The estimating procedure can comprise determining a maximum value of the mean and a direction of arrival corresponding to the maximum value. The spatial selectivity of the antenna array can be configured based on the estimated direction of arrival. Other exemplary embodiments can include communication apparatus and computer-readable media embodying one or more of the exemplary computer-implemented methods and/or procedures.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 11, 2019
    Assignees: New York University, Electronics and Telecommunication Research Institute (ETRI)
    Inventor: Theodore S. Rappaport
  • Publication number: 20190149223
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 16, 2019
    Inventor: Theodore S. Rappaport
  • Patent number: 10224999
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: March 5, 2019
    Inventor: Theodore S. Rappaport
  • Publication number: 20170288727
    Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 5, 2017
    Inventor: Theodore S. Rappaport